【題目】如圖,O為數(shù)軸的原點,A,B為數(shù)軸上的兩點,點A表示的數(shù)為-30,點B表示的數(shù)為100.

(1)A,B兩點間的距離是________.

(2)若點C也是數(shù)軸上的點,點C到點B的距離是點C到原點O的距離的3倍,求點C表示的數(shù).

(3)若電子螞蟻P從點B出發(fā),以6個單位長度/s的速度向左運動,同時另一只電子螞蟻Q恰好從點A出發(fā),以4個單位長度/s的速度向左運動,設兩只電子螞蟻同時運動到了數(shù)軸上的點D,那么點D表示的數(shù)是多少?

(4)若電子螞蟻P從點B出發(fā),以8個單位長度/s的速度向右運動,同時另一只電子螞蟻Q恰好從點A出發(fā),以4個單位長度/s的速度向右運動.設數(shù)軸上的點N到原點O的距離等于點P到原點O的距離的一半(點N在原點右側),有下面兩個結論:①ON+AQ的值不變;②ON-AQ的值不變,請判斷哪個結論正確,并求出正確結論的值.

【答案】(1)130(2)點C表示的數(shù)為-50或25(3)點D表示的數(shù)為-290(4)ON-AQ的值不變

【解析】

試題1)根據(jù)兩點間的距離公式即可求解;(2)設C對應的數(shù)為x,根據(jù)CB的距離是C到原點O的距離的3倍列出方程,解方程即可;(3)設從出發(fā)到相遇時經歷時間為t秒,根據(jù)相遇時兩只電子螞蟻運動的路程之差=A、B間的距離列出方程,解方程即可;(4)設運動時間為t秒,則PO=100+8t,AQ=4t.由數(shù)軸上的點N到原點O的距離等于P點到O的距離的一半可知ON=PO=50+4t,所以ON-AQ=50+4t-4t=50,從而判斷結論正確.

試題解析:(1)由題意知:AB=130;

2)如果C在原點右邊,則C點:100÷3+1)=25;如果C在原點左邊,則C點:-100÷3-1=-50.C對應的數(shù)為-5025

3)設從出發(fā)到相遇時經歷時間為 t,則:6t-4t=130,求得:t=65,65×4=260,則260+30=290,所以D點對應的數(shù)為-290;

4ON-AQ的值不變.設運動時間為t秒,則PO=100+8t,AQ=4t.NPO的中點,得ON=PO=50+4t,所以ON-AQ=50+4t-4t=50.從而判斷結論正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2 的正方形ABCD中,點E為AD邊的中點,將△ABE沿BE翻折,使點A落在點A′處,作射線EA′,交BC的延長線于點F,則CF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長交AD于E,交BA的延長線于點F.

(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】麒麟區(qū)第七中學現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計劃在空地上種草皮,經測量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m

1)求出空地ABCD的面積?

2)若每種植1平方米草皮需要300元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,P,Q分別是BC,AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R,S,若AQ=PQ,PR=PS,則這四個結論中正確的有( )

①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點、數(shù)b的點與原點的距離相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化簡:|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( 。

A. BD=DC,AB=AC B. ADB=ADC,BD=DC

C. B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】做如下操作:在等腰三角形ABC中,AB= AC,AD平分BAC,交BC于點D.ABD作關于直線AD的軸對稱變換,所得的象與ACD重合.

對于下列結論:在同一個三角形中,等角對等邊;在同一個三角形中,等邊對等角;

等腰三角形的頂角平分線、底邊上的中線和高互相重合.

上述操作可得出的是 (將正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,BEACE,且D、E分別是AB、AC的中點.延長BC至點F,使CF=CE

1)求ABC的度數(shù);

2)求證:BE=FE

3)若AB=2,求CEF的面積.

查看答案和解析>>

同步練習冊答案