【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角有 ;
(2)若∠COD=30°,求∠DOE的度數(shù);
(3)當(dāng)∠AOD=α°時,請直接寫出∠DOE的度數(shù).
【答案】(1)∠BOE、∠COE;(2)∠DOE=90°;(3)∠DOE=90°.
【解析】
(1)由圖可知∠BOE是與∠AOE互補的角,又由射線OE平分∠BOC可知∠BOE=∠COE,則可知與∠AOE互補的角是∠BOE、∠COE;
(2)由射線OD平分∠AOC可求解出∠AOC的度數(shù),繼而利用互補可求解出∠BOC的度數(shù),再由射線OE分別∠BOC,可求解出∠EOC的度數(shù),則∠DOE=∠COD+∠COE;
(3)由射線OD和射線OE分別平分∠AOC和∠BOC,以及∠AOC和∠BOC互補可知∠DOE=(∠AOC+∠BOC)=×180°=90°.
解:(1)∵OE平分∠BOC,
∴∠BOE=∠COE;
∵∠AOE+∠BOE=180°,
∴∠AOE+∠COE=180°,
∴與∠AOE互補的角是∠BOE、∠COE;
故答案為∠BOE、∠COE;
(2)∵OD、OE分別平分∠AOC、∠BOC,
∴∠COD=∠AOD=30°,∠COE=∠BOE=∠BOC,
∴∠AOC=2×30°=60°,
∴∠BOC=180°﹣60°=120°,
∴∠COE=∠BOC=60°,
∴∠DOE=∠COD+∠COE=90°;
(3)由由射線OD和射線OE分別平分∠AOC和∠BOC分別可得∠AOD=∠COD=∠AOC, ∠BOE=∠COE=∠BOC,則∠DOE=∠COD+∠COE=(∠AOC+∠BOC),再由圖可知∠AOC和∠BOC互補,故∠DOE=(∠AOC+∠BOC)=×180°=90°,與α無關(guān).
故當(dāng)∠AOD=α°時,∠DOE=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小龍在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的家庭收入情況. 他從中隨機調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
分組 | 頻數(shù) | 百分比 |
600≤<800 | 2 | 5% |
800≤<1000 | 6 | 15% |
1000≤<1200 | 45% | |
9 | 22.5% | |
1600≤<1800 | 2 | |
合計 | 40 | 100% |
根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布表.
(2)補全頻數(shù)分布直方圖.
(3)繪制相應(yīng)的頻數(shù)分布折線圖.
(4)請你估計該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=2,MN⊥AB于點M,且AM=BM,P是射線MN上一動點,E,D分別是PA,PB的中點,過點A,M,D的圓與BP的另一交點C(點C在線段BD上),連結(jié)AC,DE.
(1)當(dāng)∠APB=28°時,求∠B和 的度數(shù);
(2)求證:AC=AB.
(3)在點P的運動過程中
①當(dāng)MP=4時,取四邊形ACDE一邊的兩端點和線段MP上一點Q,若以這三點為頂點的三角形是直角三角形,且Q為銳角頂點,求所有滿足條件的MQ的值;
②記AP與圓的另一個交點為F,將點F繞點D旋轉(zhuǎn)90°得到點G,當(dāng)點G恰好落在MN上時,連結(jié)AG,CG,DG,EG,直接寫出△ACG和△DEG的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(1,0),B(2,﹣3),C(4,﹣2).
(1)①畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;②畫出△A1B1C1向左平移3個單位長度后得到的△A2B2C2;
(2)如果AC上有一點P(m,n)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,操場的兩端為半圓形,中間是一個長方形. 已知半圓的半徑為r,直跑道的長為l,請用關(guān)于r,l的多項式表示這個操場的面積. 這個多項式能分解因式嗎?若能,請把它分解因式,并計算當(dāng)r=40m,l=30πm時操場的面積(結(jié)果保留π);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題學(xué)習(xí):設(shè)計概率模擬實驗. 在學(xué)習(xí)概率時,老師說:“擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實驗后,正面朝上的概率約是 .”小海、小東、小英分別設(shè)計了下列三個模擬實驗:
小海找來一個啤酒瓶蓋(如圖1)進(jìn)行大量重復(fù)拋擲,然后計算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;
小東用硬紙片做了一個圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個大小一樣的扇形區(qū)域,并依次標(biāo)上1至8個數(shù)字(如圖2),轉(zhuǎn)動轉(zhuǎn)盤10次,然后計算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;
小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復(fù)上述實驗,然后計算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.
根據(jù)以上材料回答問題:
小海、小東、小英三人中,哪一位同學(xué)的實驗設(shè)計比較合理,并簡要說出其他兩位同學(xué)實驗的不足之處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⑴如圖1,點M、N分別在∠AOB的邊OA、OB上,且OM=ON,過點M、N分別作MP⊥OA、NP⊥OB,MP、NP交于P,E、F分別為線段MP、NP上的點,且∠EOF=∠AOB,延長PM到S,使MS=NF,連接OS,則∠EOF與∠EOS的數(shù)量關(guān)系為 ,線段NF、EM、EF的數(shù)量關(guān)系為
⑵如圖2,點M、N分別在∠AOB的邊OA、OB上,且OM=ON,, E、F分別為線段MP、NP上的點,且∠EOF=∠AOB,⑴中的線段NF、EM、EF的數(shù)量關(guān)系是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明。
⑶如圖3,點M、N分別在∠AOB的邊OA、OB上,且OM=ON,, E、F分別為線段PM、NP延長線上的點,且∠EOF=∠AOB,⑴中的線段NF、EM、EF的數(shù)量關(guān)系是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.
如:
因此,4,12,20這三個數(shù)都是神秘數(shù).
(1)28和2012這兩個數(shù)是不是神秘數(shù)?為什么?
(2)設(shè)兩個連續(xù)偶數(shù)為和(其中為非負(fù)整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù),請說明理由.
(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地雪災(zāi)發(fā)生之后,災(zāi)區(qū)急需帳篷。某車間的甲、乙兩名工人分別同時生產(chǎn)同種帳篷上的同種零件,他們一天生產(chǎn)零件y(個)與生產(chǎn)時間t(時)的函數(shù)關(guān)系如圖所示。
①甲、乙中______先完成一天的生產(chǎn)任務(wù);在生產(chǎn)過程中,______因機器故障停止生產(chǎn)______小時。
②當(dāng)t=______時,甲、乙生產(chǎn)的零件個數(shù)相等。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com