【題目】如圖,正方形ABCD的對(duì)角線交點(diǎn)為O,正方形OEFG的邊長(zhǎng)與正方形ABCD的邊長(zhǎng)相等,若將正方形OEFG繞點(diǎn)O旋轉(zhuǎn),試說明旋轉(zhuǎn)到如圖的位置時(shí),兩正方形重疊部分的面積與正方形面積之間的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為5cm,AB,CD是⊙O的兩條弦,AB‖CD,AB=8,CD=6,AB和CD之間的距離是___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)求不等式的解集(請(qǐng)直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E、F是對(duì)角線BD上的兩點(diǎn),且BE=DF.
(1)求證:四邊形AECF是平行四邊形.
(2)如果四邊形ABCD是菱形,求證:四邊形AECF也是菱形.
(3)如果四邊形ABCD是矩形,請(qǐng)判斷四邊形AECF的形狀,不必寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn),,,a是的立方根,方程是關(guān)于x,y的二元一次方程,d為不等式組的最大整數(shù)解.
求點(diǎn)A、B、C的坐標(biāo);
如圖1,若D為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),與的平分線交于M點(diǎn),求的度數(shù);
如圖2,若D為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),連BD交x軸于點(diǎn)E,問是否存在點(diǎn)D,使?若存在,請(qǐng)求出D的縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,數(shù)軸上,點(diǎn)的初始位置表示的數(shù)為,現(xiàn)點(diǎn)做如下移動(dòng),第1次點(diǎn)向左移動(dòng)3個(gè)單位長(zhǎng)度至點(diǎn),第2次從點(diǎn)向右移動(dòng)6個(gè)單位長(zhǎng)度至點(diǎn),第次從點(diǎn)向左移動(dòng)個(gè)單位長(zhǎng)度至點(diǎn),…,按照這種移動(dòng)方式進(jìn)行下云,如果點(diǎn)與原點(diǎn)的距離不小于,那么的最小值是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】、兩倉庫分別有水泥噸和噸,、兩工地分別需要水泥噸和噸.已知從、倉庫到、工地的運(yùn)價(jià)如下表:
到工地 | 到工地 | |
倉庫 | 每噸元 | 每噸元 |
倉庫 | 每噸元 | 每噸元 |
1)若從倉庫運(yùn)到工地的水泥為噸,則用含的代數(shù)式表示從倉庫運(yùn)到工地的水泥為_____噸,從倉庫將水泥運(yùn)到工地的運(yùn)輸費(fèi)用為______元;
(2)求把全部水泥從、兩倉庫運(yùn)到、兩工地的總運(yùn)輸費(fèi)(用含的代數(shù)式表示并化簡(jiǎn));
(3)如果從倉庫運(yùn)到工地的水泥為噸時(shí),那么總運(yùn)輸費(fèi)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,健民體育活動(dòng)中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?
(2)根據(jù)健民體育活動(dòng)中心消費(fèi)者的需求量,活動(dòng)中心決定用不超過2550元錢購進(jìn)甲、乙兩種羽毛球共50筒,那么最多可以購進(jìn)多少筒甲種羽毛球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo).
(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A′B′C′,寫出 A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形.
(3)求出三角形ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com