【題目】某校為了解家長和學生“參與防溺水教育”的情況,在本校學生中隨機抽取部分學生做調(diào)查,把調(diào)查的數(shù)據(jù)分為以下4類情形:A:僅學生自己參與;B:家長與學生一起參與;C:僅家長自己參與;D:家長和學生都未參與;并把調(diào)查結果繪制成了以下兩種統(tǒng)計圖(不完整).
根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)本次接受調(diào)查的學生共有_____人.
(2)已知B類人數(shù)是D類人數(shù)的6倍.
①補全條形統(tǒng)計圖;
②求扇形統(tǒng)計圖中B類的圓心角度數(shù);
③根據(jù)調(diào)查結果,估計該校2000名學生中“家長和學生都未參與”的人數(shù).
【答案】(1)300;(2)①詳見解析;②108°;③100
【解析】
(1)由A類別人數(shù)及其所占百分比;
(2)①先求出B、D的人數(shù)和,結合B類人數(shù)是D類人數(shù)的6倍可得答案;
②用360°乘以B人數(shù)占被調(diào)查人數(shù)的比例即可得;
③總人數(shù)乘以樣本中D類別人數(shù)的比例.
(1)(1)本次接受調(diào)查的學生共有120÷40%=300(人),
故答案為:300;
(2) ①D類人數(shù) (300-120-75)÷(6+1)=15人.
B類人數(shù) 6×15=90人.
根據(jù)以上數(shù)據(jù)補全圖形 ,
②B類的圓心角為 ×360°=108°.
③2000×=100(人).
答:估計該校2000名學生中“家長和學生都未參與”的有100人.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( ).
A. “打開電視機,正在播放《動物世界》”是必然事件
B. 某種彩票的中獎概率為,說明每買1000張,一定有一張中獎
C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為
D. 想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解全校學生上學的交通方式,該校九年級班的4名同學聯(lián)合設計了一份調(diào)查問卷,對該校部分學生進行了隨機調(diào)查按騎自行車、乘公交車、步行、乘私家車、其他方式設置選項,要求被調(diào)查同學從中單選,并將調(diào)查結果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:
本次接受調(diào)查的總人數(shù)是______人,并把條形統(tǒng)計圖補充完整;
在扇形統(tǒng)計圖中,“乘私家車的人數(shù)所占的百分比是______,“其他方式”所在扇形的圓心角度數(shù)是______度;
已知這4名同學中有2名女同學,要從中選兩名同學匯報調(diào)查結果,請你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生參加戶外活動的情況,某市教育行政部門對部分學生參加戶外活動的時間進行了抽樣調(diào)查,并將調(diào)查結果繪制成下列兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:
(1)這次抽樣共調(diào)查了 名學生,并補全條形統(tǒng)計圖;
(2)計算扇形統(tǒng)計圖中表示戶外活動時間0.5小時的扇形圓心角度數(shù);
(3)求出本次調(diào)查學生參加戶外活動的平均時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解決下列問題:
(1)兩個班共有女生多少人?
(2)將頻數(shù)分布直方圖補充完整;
(3)求扇形統(tǒng)計圖中部分所對應的扇形圓心角度數(shù);
(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,則AB,AD,DC之間的數(shù)量關系為_______.
(2)問題探究:如圖2,在四邊形ABCD中,AB∥DC,E是BC的中點,點F是DC的延長線上一點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的數(shù)量關系,并證明你的結論;
(3)問題解決:如圖3,AB∥CD,點E在線段BC上,且BE:EC=3:4.點F在線段AE上,且∠EFD =∠EAB,直接寫出AB,DF,CD之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(點F和點A重合)的邊EF和矩形的邊AB在同一直線上.現(xiàn)將Rt△PEF從A以每秒1個單位的速度向射線AB方向勻速平移,當點F與點B重合時停止運動,設運動時間為t秒,
解答下列問題:
(1)如圖1,連接PD,填空:∠PFD= ,四邊形PEAD的面積是 ;
(2)如圖2,當PF經(jīng)過點D時,求 △PEF運動時間t的值;
(3)在運動的過程中,設△PEF與△ABD重疊部分面積為S,請求出S與t的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中結論正確的個數(shù)是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從-1,1, 2這三個數(shù)字中,隨機抽取一個數(shù),記為a.那么,使關于x的一次函數(shù)的圖象與x軸、y軸圍成的三角形面積為,且使關于x的不等式組有解的概率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com