【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于點A2,5),C5,n),y軸于點B,x軸于點D

1)求反比例函數(shù)和一次函數(shù)y1=kx+b的表達式;

2)連接OA,OC,AOC的面積;

3)根據(jù)圖象,直接寫出y1y2x的取值范圍

【答案】(1)反比例函數(shù)的表達式是y2= ,一次函數(shù)的表達式是y1=x﹣3;(2)10.5;(3)-2<x<0x>5.

【解析】試題分析:1)把的坐標代入反比例函數(shù)的解析式求出,把的坐標代入反比例函數(shù)解析式求出,把的坐標代入一次函數(shù)的解析式得出方程組,求出方程組的解即可;
2)求出一次函數(shù)與x軸的交點坐標,的值,根據(jù)三角形的面積公式求出即可;
3)結(jié)合圖象和的坐標即可求出答案.

試題解析:(1)∵把A(2,5)代入代入得:m=10,

∵把C(5,n)代入得:n=2,

C(5,2),

∵把A.C的坐標代入得:

解得:k=1,b=3

答:反比例函數(shù)的表達式是一次函數(shù)的表達式是

(2)∵把y=0代入得:x=3,

D(3,0)OD=3,

答:△AOC的面積是10.5;

(3)根據(jù)圖象和A.C的坐標得出x的取值范圍是:2<x<0x>5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BC相交于點N.連接BM,DN

(1)求證:四邊形BMDN是菱形;

(2)AB=4,AD=8,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體的三個視圖如圖所示(單位:cm).

(1)寫出這個幾何體的名稱: ;

(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計算這個幾何體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCO,以點O為原點,OC所在的直線為x軸,建立直角坐標系,ABy軸于點DAD=4,OC=10,∠A=60°,線段EF垂直平分OD,點P為線段EF上的動點,PM⊥x軸于點M點,點EE'關(guān)于x軸對稱,連接BP、E'M,則BP+PM+ME'的長度的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某柜臺銷售每臺進價分別為160元、120元的AB兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

6

1900

(進價、售價均保持不變,利潤=銷售收入進貨成本)

(1)AB兩種型號的電風(fēng)扇的銷售單價;

(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,請問商場銷售完這50臺電風(fēng)扇能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設(shè)備共8臺,用于同時治理不同成分的污水,若購買A2臺、B3臺需54萬,購買A4臺、B2臺需68萬元.

1)求出A型、B型污水處理設(shè)備的單價;

2)經(jīng)核實,一臺A型設(shè)備一個月可處理污水220噸,一臺B型設(shè)備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標系xOy中的位置如圖所示.

1)作ABC關(guān)于點C成中心對稱的A1B1C1

2)將A1B1C1向右平移4個單位,作出平移后的A2B2C2

3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃撥款9萬元從廠家購進50臺電視機,已知該廠生產(chǎn)三種不同型號的電視機,出廠價分別為甲種每臺1500, 乙種每臺2100, 丙種每臺2500, 若商場同時購進其中兩種不同型號的電視機共50,用去9萬元.請你通過計算,說明商場有哪些進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知ABC中,ABBC1,∠ABC90°,把一塊含30°角的直角三角板DEF的直角頂點D放在AC的中點上(直角三角板的短直角邊為DE,長直角邊為DF),將直角三角板DEFD點按逆時針方向旋轉(zhuǎn).

1)在圖1中,DE交邊ABM,DF交邊BCN,證明:DMDN;

2)在這一旋轉(zhuǎn)過程中,直角三角板DEFABC的重疊部分為四邊形DMBN,請說明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請說明是如何變化的?若不發(fā)生變化,求出其面積;

3)繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長ABDEM,延長BCDFN,DMDN是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案