【題目】如圖,將的長方形紙片沿過項點的直線為折痕折疊時,點與邊上的點重合,試分別求出的長.
【答案】DQ=6;PQ=5.
【解析】
由折疊的性質(zhì)可知△ABP≌AQP,根據(jù)全等三角形的性質(zhì)可知AB=AQ=10,利用勾股定理即可求出線段DQ的長度;由DQ=6,得出CQ=DC-DQ=4,設PQ=x,則PB=PQ=x,所以CP=BC-BP=8-x,利用勾股定理可建立關于x的方程,解方程求出x的值即可.
解:由折疊的性質(zhì)可知△ABP≌AQP,
∴AB=AQ=10,
∵四邊形ABCD是矩形,
∴∠D=90°,
∵AD=8cm,
∴,
∴線段DQ的長度是6cm;
由(1)可知DQ=6,
∴CQ=DC-DQ=4,
設PQ=x,則PB=PQ=x,
∴CP=BC-BP=8-x,
∴x2=42+(8-x)2,
解得:x=5,
∴線段PQ的長度是5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過點A(1,4),且該直線與x軸的交點為B.
(1)求反比例函數(shù)和直線的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DF,M、N分別是DC、DF的中點,連接MN.若AB=7,BE=5,則MN=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,已知A(﹣1,0),C(0,3)
(1)求該拋物線的表達式;
(2)求BC的解析式;
(3)點M是對稱軸右側點B左側的拋物線上一個動點,當點M運動到什么位置時,△BCM的面積最大?求△BCM面積的最大值及此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=10°,點P在OB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:
(1)該超市“元旦”期間共銷售 個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應的扇形圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是等邊△ABC邊AB上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC和BC上,則CE:CF的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC邊的中點,點E與點D關于AB對稱,連接AE、BE,分別延長AE、CB交于點F,若∠F=48°,則∠C的度數(shù)是( )
A. 21°B. 52°C. 69°D. 74°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com