【題目】填空并完成以下證明: 已知,如圖,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DE∥BC( 。
∴∠2= ( 。
∵∠2=∠3(已知)
∴∠3= 。等量代換)
∴CD∥FH( )
∴∠BDC=∠BHF( 。
又∵FH⊥AB(已知)
∴
【答案】同位角相等,兩直線平行; ∠DCB; 兩直線平行,內(nèi)錯(cuò)角相等; ∠DCB; 同位角相等,兩直線平行; 兩直線平行,同位角相等; CD⊥AB.
【解析】
先根據(jù)垂直的定義得出∠BHF=90°,再由∠1=∠ACB得出DE/IBC,故可得出∠2=∠BCD,根據(jù)∠2=∠3得出∠3=∠BCD,所以CD//FH,由平行線的性
質(zhì)即可得出結(jié)論.
證明:∵∠1=∠ACB(已知)
∴DE∥BC( 同位角相等,兩直線平行 )
∴∠2= ∠DCB ( 兩直線平行,內(nèi)錯(cuò)角相等 。
∵∠2=∠3(已知)
∴∠3= ∠DCB
∴CD∥FH( 同位角相等,兩直線平行. 。
∴∠BDC=∠BHF(兩直線平行,同位角相等 。
又∵FH⊥AB(已知)
∴ CD⊥AB
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=4,⊙D的半徑為1.現(xiàn)將一個(gè)直角三角板的直角頂點(diǎn)與矩形的對(duì)稱中心O重合,繞著O點(diǎn)轉(zhuǎn)動(dòng)三角板,使它的一條直角邊與⊙D切于點(diǎn)H,此時(shí)兩直角邊與AD交于E,F(xiàn)兩點(diǎn),則tan∠EFO的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD , ∠BED=110°,BF平分∠ABE,DF平分∠CDE,則∠BFD= ( )
A.110°B.115°C.125°D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在四邊形ABCD中,AD∥BC, E為CD的中點(diǎn),連接 AE 、BE ,BE⊥AE, 延長(zhǎng)AE交BC的延長(zhǎng)線于 F,求證:(1) BE平分∠ABC (2)AB=BC+AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)小河的同旁有甲、乙兩個(gè)村莊(左圖),現(xiàn)計(jì)劃在河岸AB上建一個(gè)水泵站,向兩村供水,用以解決村民生活用水問題。(保留作圖痕跡)
①如果要求水泵站到甲、乙兩村莊的距離相等,水泵站M應(yīng)建在河岸AB上的何處?
②如果要求建造水泵站,供水管道使用建材最省,水泵站N又應(yīng)建在河岸AB上的何處?
(2)如圖,作出△ABC關(guān)于直線l的對(duì)稱圖形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,據(jù)調(diào)查,某家快遞公司,今年三月份與五月份完成投遞的快件總件數(shù)分別是5萬件和萬件,現(xiàn)假定該公司每月投遞的快件總件數(shù)的增長(zhǎng)率相同.
求該公司投遞快件總件數(shù)的月平均增長(zhǎng)率;
如果平均每人每月可投遞快遞萬件,那么該公司現(xiàn)有的16名快遞投遞員能否完成今年6月份的快遞投遞任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.點(diǎn)P從點(diǎn)A出發(fā),以5cm/s的速度沿AC向終點(diǎn)C勻速移動(dòng).過點(diǎn)P作PQ⊥AB,垂足為點(diǎn)Q,以PQ為邊作正方形PQMN,點(diǎn)M在AB邊上,連接CN.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t(s).
(1)PQ=______;(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)N分別滿足下列條件時(shí),求出相應(yīng)的t的值;①點(diǎn)C,N,M在同一條直線上;②點(diǎn)N落在BC邊上;
(3)當(dāng)△PCN為等腰三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古巴比倫的記數(shù)法是六十進(jìn)制的,用 表示1,用 表示10,這兩種符號(hào)能表示一直到59的數(shù)字,例如,32可以用 表示。從60起,開始使用符號(hào)組,從右往左依次是個(gè)位、六十位、三千六百位……(每一位的數(shù)值都是上一位的60倍),例如, 的個(gè)位表示23個(gè)1,六十位表示2個(gè)60,所以這個(gè)符號(hào)表示143。則下列表示3812的符號(hào)是( )
A.B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)﹣23÷4﹣|﹣3|+5×
(2)先化簡(jiǎn),再求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=
(3)解方程:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com