【題目】如圖1,∠AOB=30°,點(diǎn)M為射線OB上一點(diǎn),平面內(nèi)有一點(diǎn)P使∠PAM=150°且PA=AM.
(1)求證:∠OMA=∠OAP.
(2)如圖2,若射線OB上有一點(diǎn)Q使∠POA=∠AQO,求證:OP=AQ.
(3)如圖3,在(2)的條件下,過(guò)A作AH⊥OB,且OH=AH,已知N點(diǎn)為MQ的中點(diǎn),且ON=,則OA=____________.
【答案】(1)見解析;(2)見解析;(3)2
【解析】
(1)利用三角形的內(nèi)角和定理可得∠OAM+∠OMA=150°,再由條件∠OAP+∠OAM=150°,即可得出結(jié)論;
(2)在OB上取一點(diǎn)M使AM=AN,然后證明△OAP≌QNA即可得出結(jié)論;
(3)在OB上取一點(diǎn)C使AM =AC,設(shè)AH=x,MH=CH=y,然后用含x、y的式子表示出ON,再利用ON=建立方程求出x,即可得出答案.
(1)證明:∵∠AOB=30°,
∴∠OAM+∠OMA=150°,
∵∠PAM=∠OAP+∠OAM=150°,
∴∠OAP=∠OMA;
(2)證明:在OB上取一點(diǎn)M使AM=AN,
∴∠AMN=∠ANM,
∵∠AMO+∠AMN=180°,∠ANM+∠ANQ=180°,
∠AMO=∠ANQ,
∵∠AMO=∠OAP,
∴∠OAP=∠ANQ,
在△OAP和△QNA中
∴△OAP≌QNA(AAS),
∴OP=AQ;
(3)在OB上取一點(diǎn)C使AM =AC,
由(2)知△OAP≌△ACQ,
∴OA=CQ,
設(shè)AH=x,則OA=CQ =2x,OH=x.
設(shè)MH=CH=y,
∴MQ=MC+CQ=2x+2y,
∵N是MQ中點(diǎn),
∴MN=x+y,
∵OM=OH-MH=x-y,
∴ON=OM+MN=x+y+x-y=1+,
解得x=1,
∴OA=2x=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過(guò)程中,電阻與溫度成反例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求R和t之間的關(guān)系式;
(2)家用電滅蚊器在使用過(guò)程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過(guò)4kΩ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交點(diǎn)為C,則圖中全等三角形共有( )
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延長(zhǎng)線上有一動(dòng)點(diǎn)D,以AD為邊在右側(cè)作等邊三角形,連CE,CE最短長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形ABC與直角三角形BDE中,點(diǎn)B,C,D在同一條直線上,已知AC=AE=CD,∠BAC和∠ACB的角平分線交于點(diǎn)F,連DF,EF,分別交AB、BC于M、N,已知點(diǎn)F到△ABC三邊距離為3,則△BMN的周長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=AC=+2,D是邊AC上的動(dòng)點(diǎn),BD的垂直平分線交BC于點(diǎn)E,連接DE,若△CDE為直角三角形,則BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明用大小相同高度為2cm的10塊小長(zhǎng)方體壘了兩堵與地面垂直的木墻AD, BE,當(dāng)他將一個(gè)等腰直角三角板ABC如圖垂直放入時(shí),直角頂點(diǎn)C正好在水平線DE上,銳角頂點(diǎn)A和B分別與木墻的頂端重合,求兩堵木墻之間的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD=BC=13,點(diǎn)E為射線AD上的一個(gè)動(dòng)點(diǎn),若△ABE與△A'BE關(guān)于直線BE對(duì)稱,當(dāng)△A'BC為直角三角形時(shí),AE的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點(diǎn)D、E,DE經(jīng)過(guò)點(diǎn)F.結(jié)論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長(zhǎng)=AB+AC;④BF=CF.其中正確的是______.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com