【題目】問題情境:

數(shù)學活動課上,老師讓同學們以三角形的旋轉為主題開展數(shù)學活動,△ABC和△DEC是兩個全等的直角三角形紙片,其中∠ACB=∠DCE90°,∠B=∠E30°,ABDE4

解決問題:

1)如圖1,智慧小組將△DEC繞點C順時針旋轉,發(fā)現(xiàn)當點D恰好落在AB邊上時,DEAC,請你幫他們證明這個結論;

2)縝密小組在智慧小組的基礎上繼續(xù)探究,當△DEC繞點C繼續(xù)旋轉到如圖2所示的位置時,連接AE、AD、BD,他們提出SBDCSAEC,請你幫他們驗證這一結論是否正確,并說明理由.

【答案】1)證明見解析;(2)正確,理由見解析

【解析】

1)如圖1中,根據(jù)旋轉的性質可得ACCD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質可得∠ACD60°,然后根據(jù)內錯角相等,兩直線平行進行解答;

2)如圖2中,作DMBCM,ANECEC的延長線于N.根據(jù)旋轉的性質可得BCCE,ACCD,再求出∠ACN=∠DCM,然后利用角角邊證明△ACN和△DCM全等,根據(jù)全等三角形對應邊相等可得ANDM,然后利用等底等高的三角形的面積相等證明.

解:(1)如圖1中,∵△DEC繞點C旋轉點D恰好落在AB邊上,

ACCD,

∵∠BAC90°﹣∠B90°30°60°,

∴△ACD是等邊三角形,

∴∠ACD60°,

又∵∠CDE=∠BAC60°,

∴∠ACD=∠CDE,

DEAC;

2)結論正確,

理由如下:如圖2中,作DMBCM,ANECEC的延長線于N

∵△DEC是由△ABC繞點C旋轉得到,

BCCE,ACCD,

∵∠ACN+∠BCN90°,∠DCM+∠BCN180°90°90°,

∴∠ACN=∠DCM,

在△ACN和△DCM中,

,

∴△ACN≌△DCMAAS),

ANDM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

SBDCSAEC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學在校外實踐活動中對此開展測量活動.如圖,在橋外一點A測得大橋主架與水面的交匯點C的俯角為α,大橋主架的頂端D的仰角為β,已知測量點與大橋主架的水平距離ABa,則此時大橋主架頂端離水面的高CD( )

A.asinα+asinβB.acosα+acosβC.atanα+atanβD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形中,分別以所在直線為軸,軸,建立如圖所示的平面直角坐標系.邊上一個動點(不與,重合),過點的反比例函數(shù)的圖象與邊交于點,已知,,將沿折疊,點恰好落在邊上的點處,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鈍角ABC中,AB=AC,BC=2,O是邊AB上一點,以O為圓心,OB為半徑作⊙O,交邊AB于點D,交邊BC于點E,過E作⊙O的切線交邊AC于點F.

(1)求證:EFAC.

(2)連結DF,若∠ABC=30°,且DFBC,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A1的坐標為(0,1),點A2x軸的正半軸上,且∠A1A2O30°,過點A2A2A3A1A2,交y軸于點A3;過點A3A3A4A2A3,交x軸于點A4;過點A4A4A5A3A4,交y軸于點A5;……;按此規(guī)律進行下去,則點A2021的坐標為( )

A.(0,31011)B.(﹣310110)C.(0,31010)D.(﹣31010,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市少年宮為小學生開設了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學生對這四類興趣班的喜愛情況,對學生進行了隨機問卷調查(問卷調查表如圖所示),將調查結果整理后繪制了一幅不完整的統(tǒng)計表

最受歡迎興趣班調查問卷

統(tǒng)計表

選項

興趣班

請選擇

興趣班

頻數(shù)

頻率

A

繪畫

A

0.35

B

音樂

B

18

0.30

C

舞蹈

C

15

D

跆拳道

D

6

你好!請選擇一個(只能選一個)你最喜歡的興趣班,在其后空格內打“”,謝謝你的合作.

1

請你根據(jù)統(tǒng)計表中提供的信息回答下列問題:

1)統(tǒng)計表中的 , ;

2)根據(jù)調查結果,請你估計該市2000名小學生中最喜歡“繪畫”興趣的人數(shù);

3)王姝和李要選擇參加興趣班,若他們每人從A、B、CD四類興趣班中隨機選取一類,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一類的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有專家指出:人為型空氣污染(如汽車尾氣排放等)是霧霾天氣的重要成因.某校為倡議每人少開一天車,共建綠色家園,想了解學生上學的交通方式.九年級(8)班的5名同學聯(lián)合設計了一份調查問卷.對該校部分學生進行了隨機調查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設置選項,要求被調查同學從中單選.并將調查結果繪制成條形統(tǒng)計圖1和扇形統(tǒng)計圖2,根據(jù)以上信息,解答下列問題:

1)本次接受調查的總人數(shù)是   人,扇形統(tǒng)計圖中騎自行車所在扇形的圓心角度數(shù)是   度,請補全條形統(tǒng)計圖;

2)已知這5名學生中有2名女同學,要從這5名學生中任選兩名同學匯報調查結果.請用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某射擊運動員在訓練中射擊了10次,成績如圖,下列結論正確的是(

A.平均數(shù)是8B.眾數(shù)是8 C.中位數(shù)是9 D.方差是1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸負半軸交于點A-10),與y軸正半軸交與點B,頂點為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經過A、B

(1) 求一次函數(shù)解析式;

(2)求頂點P的坐標;

(3)平移直線AB使其過點P,如果點M在平移后的直線上,且,求點M坐標;

(4)設拋物線的對稱軸交x軸與點E,聯(lián)結APy軸與點D,若點Q、N分別為兩線段PE、PD上的動點,聯(lián)結QD、QN,請直接寫出QD+QN的最小值.

查看答案和解析>>

同步練習冊答案