如圖所示,已知二次函數(shù)經(jīng)過、、C三點(diǎn),點(diǎn)是拋物線與直線的一個(gè)交點(diǎn).
(1)求二次函數(shù)關(guān)系式和點(diǎn)C的坐標(biāo);
(2)對(duì)于動(dòng)點(diǎn),求的最大值;
(3)若動(dòng)點(diǎn)M在直線上方的拋物線運(yùn)動(dòng),過點(diǎn)M做x軸的垂線交x軸于點(diǎn)F,如果直線AP把線段MF分成1:2的兩部分,求點(diǎn)M的坐標(biāo)。
(1)函數(shù)關(guān)系式:; C點(diǎn)坐標(biāo)為(0,3)
(2)
(3)M的坐標(biāo)為
解析試題分析:(1)本題考查的是二次函數(shù)的性質(zhì)以及待定系數(shù)法求二次函數(shù)解析式的相關(guān)知識(shí),我們要注意根據(jù)已知條件選擇合適的關(guān)系式的設(shè)法,本題利用一般式,由于已知常數(shù)項(xiàng),再把兩點(diǎn)坐標(biāo)代入關(guān)系式,得到關(guān)于a、b的二元一次方程組,解方程組求出a、b的值,關(guān)系式便可得出.C點(diǎn)坐標(biāo)為(0,3)(2)把函數(shù)關(guān)系式寫成頂點(diǎn)式的形式后,可以知道動(dòng)點(diǎn)在二次函數(shù)的對(duì)稱軸上,只有當(dāng)Q、P、B三點(diǎn)共線時(shí),的值最大.(3)由于點(diǎn)M、E都在x軸上方,MF∥y軸,ME=yM-yE EF=yE MF=yM 線段MF分成1:2的兩部分注意有兩種情況,見題解.
試題解析:解(1)把兩點(diǎn)坐標(biāo)代入關(guān)系式得a=-1,b=2
∴函數(shù)關(guān)系式為.由函數(shù)關(guān)系式得C點(diǎn)坐標(biāo)為(0,3).
(2)如圖:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/4/sbqv.png" style="vertical-align:middle;" />,所以動(dòng)點(diǎn)Q(1,n)在二次函數(shù)的對(duì)稱軸上。 所以當(dāng)點(diǎn)Q、P、B三點(diǎn)共線時(shí),的值最大,最大值為
把x=2代入,得y=3
即點(diǎn)P的坐標(biāo)為(2,3),又因?yàn)锽(3,0)
所以
(3)因?yàn)辄c(diǎn)P坐標(biāo)為(2,3)代入得k=1
所以直線l的關(guān)系式為:y=x+1
因?yàn)锳P把線段MF分成1:2的兩部分,
則根據(jù)題意,
設(shè)點(diǎn)M的橫坐標(biāo)為x,那么
解得x=0或
代入y=x+1得:y=3或
所以點(diǎn)M的坐標(biāo)為
考點(diǎn):1、待定系數(shù)法求二次函數(shù)解析式;2、二次函數(shù)的圖象;3、平面直角坐標(biāo)系中線段的長度的表示方法;4、三點(diǎn)共線時(shí),兩線段之差是最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1、2,已知四邊形ABCD為正方形,在射線AC上有一動(dòng)點(diǎn)P,作PE⊥AD(或延長線)于E,作PF⊥DC(或延長線)于F,作射線BP交EF于G.
(1)在圖1中,設(shè)正方形ABCD的邊長為2,四邊形ABFE的面積為y,AP=x,求y關(guān)于x的函數(shù)表達(dá)式;
(2)結(jié)論:GB⊥EF對(duì)圖1,圖2都是成立的,請(qǐng)任選一圖形給出證明;
(3)請(qǐng)根據(jù)圖2證明:△FGC∽△PFB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
定義1:在△ABC中,若頂點(diǎn)A,B,C按逆時(shí)針方向排列,則規(guī)定它的面積為“有向面積”;若頂點(diǎn)A,B,C按順時(shí)針方向排列,則規(guī)定它的面積的相反數(shù)為△ABC的“有向面積”.“有向面積”用表示,例如圖1中,,圖2中,.
定義2:在平面內(nèi)任取一個(gè)△ABC和點(diǎn)P(點(diǎn)P不在△ABC的三邊所在直線上),稱有序數(shù)組(,,)為點(diǎn)P關(guān)于△ABC的“面積坐標(biāo)”,記作,例如圖3中,菱形ABCD的邊長為2,,則,點(diǎn)G關(guān)于△ABC的“面積坐標(biāo)”為.在圖3中,我們知道,利用“有向面積”,我們也可以把上式表示為:.
應(yīng)用新知:
(1)如圖4,正方形ABCD的邊長為1,則 ,點(diǎn)D關(guān)于△ABC的“面積坐標(biāo)”是 ;探究發(fā)現(xiàn):
(2)在平面直角坐標(biāo)系中,點(diǎn),
①若點(diǎn)P是第二象限內(nèi)任意一點(diǎn)(不在直線AB上),設(shè)點(diǎn)P關(guān)于的“面積坐標(biāo)”為,
試探究與之間有怎樣的數(shù)量關(guān)系,并說明理由;
②若點(diǎn)是第四象限內(nèi)任意一點(diǎn),請(qǐng)直接寫出點(diǎn)P關(guān)于的“面積坐標(biāo)”(用x,y表示);
解決問題:
(3)在(2)的條件下,點(diǎn),點(diǎn)Q在拋物線上,求當(dāng)的值最小時(shí),點(diǎn)Q的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線(b,c均為常數(shù))與x軸交于兩點(diǎn),與y軸交于點(diǎn).
(1)求該拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)若P是拋物線上一點(diǎn),且點(diǎn)P到拋物線的對(duì)稱軸的距離為3,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=x²+bx+c與直線y=x-1交于A、B兩點(diǎn).點(diǎn)A的橫坐標(biāo)為-3,點(diǎn)B在y軸上,點(diǎn)P是y軸左側(cè)拋物線上的一動(dòng)點(diǎn),橫坐標(biāo)為m,過點(diǎn)P作PC⊥x軸于C,交直線AB于D.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時(shí),;
(3)是否存在點(diǎn)P,使△PAD是直角三角形,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
若兩個(gè)二次函數(shù)圖象的頂點(diǎn),開口方向都相同,則稱這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”。
(1)請(qǐng)寫出兩個(gè)為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的圖象經(jīng)過點(diǎn)A(1,1),若y1+y2為y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求當(dāng)0≤x≤3時(shí),y2的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A(5,0)、B(-1,0)兩點(diǎn),過點(diǎn)A作直線AC⊥x軸,交直線于點(diǎn)C;
(1)求該拋物線的解析式;
(2)求點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo),判定點(diǎn)是否在拋物線上,并說明理由;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段于點(diǎn)M,是否存在這樣的點(diǎn)P,使四邊形PACM是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為x=1,點(diǎn)A坐標(biāo)為(-1,0).則下面的四個(gè)結(jié)論:
①2a+b=0;②4a+2b+c>0;③B點(diǎn)坐標(biāo)為(4,0);④當(dāng)x<-1時(shí),y>0.
其中正確的是( 。
A.①② B.③④ C.①④ D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(點(diǎn)P與F、G不重合),作PQ∥y軸與拋物線交于點(diǎn)Q.
(1)若經(jīng)過B、E、C三點(diǎn)的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b= ,c= (直接填空)
(2)①以P、D、E為頂點(diǎn)的三角形是直角三角形,則點(diǎn)P的坐標(biāo)為 (直接填空)
②若拋物線頂點(diǎn)為N,又PE+PN的值最小時(shí),求相應(yīng)點(diǎn)P的坐標(biāo).
(3)連結(jié)QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com