【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點(diǎn)C,D作BA和BC的平行線,兩線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求四邊形ADCE的面積.
【答案】18
【解析】
(1)欲證明四邊形ADCE是菱形,需先證明四邊形ADCE為平行四邊形,然后再證明其對角線相互垂直;
(2)根據(jù)勾股定理得到AC的長度,由含30度角的直角三角形的性質(zhì)求得DE的長度,然后由菱形的面積公式:S=ACDE進(jìn)行解答.
(1)證明:∵DE∥BC,EC∥AB,
∴四邊形DBCE是平行四邊形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD為AB邊上的中線,
∴AD=DB=CD.
∴EC=AD.
∴四邊形ADCE是平行四邊形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四邊形ADCE是菱形;
(2)解:Rt△ABC中,CD為AB邊上的中線,∠B=60°,BC=6,
∴AD=DB=CD=6.
∴AB=12,由勾股定理得AC=
∵四邊形DBCE是平行四邊形,
∴DE=BC=6.
∴==18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.
(1)分別寫出A、B、C的坐標(biāo);
(2)請?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于y軸對稱,并寫出B1的坐標(biāo);
(3)請?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC關(guān)于原點(diǎn)對稱,并寫出A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李大媽加盟了“紅紅”全國燒烤連鎖店,該公司的宗旨是“薄利多銷”,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價(jià)定為元時(shí),每天能賣出串,在此基礎(chǔ)上,每加價(jià)元李大媽每天就會(huì)少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價(jià)為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,D為AC的中點(diǎn),∠EDF=120°,DE交線段AB于E,DF交直線BC于F.
(1)如圖(1),求證:DE=DF;
(2)如圖(2),若BE=3AE,求證:CF=BC.
(3)如圖(3),若BE=AE,則CF= BC;在圖(1)中,若BE=4AE,則CF= BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點(diǎn)作CE⊥BD交BD于E點(diǎn),H為BC中點(diǎn),連接AH交BD于G點(diǎn),交EC的延長線于F點(diǎn),下列5個(gè)結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE,⑤CF=BD.正確的有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次出數(shù)的圖象與軸交于點(diǎn)、且,與軸的正半軸的交點(diǎn)在的下方,則①,②,③,④,其中正確的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠在生產(chǎn)過程中要消耗大量電能,消耗每千度電產(chǎn)生利潤與電價(jià)是一次函數(shù)關(guān)系,經(jīng)過測算,工廠每千度電產(chǎn)生利潤(元/千度))與電價(jià)(元/千度)的函數(shù)圖象如圖:
當(dāng)電價(jià)為元/千度時(shí),工廠消耗每千度電產(chǎn)生利潤是多少?
為了實(shí)現(xiàn)節(jié)能減排目標(biāo),有關(guān)部門規(guī)定,該廠電價(jià)(元/千度)與每天用電量(千度)的函數(shù)關(guān)系為,且該工廠每天用電量不超過千度,為了獲得最大利潤,工廠每天應(yīng)安排使用多少度電?工廠每天消耗電產(chǎn)生利潤最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將與2022年2月20日在北京舉行,北京將成為歷史上第一座舉辦過夏奧會(huì)又舉辦過冬奧會(huì)的城市,東寶區(qū)舉辦了一次冬奧會(huì)知識(shí)網(wǎng)上答題競賽,甲、乙兩校各有400名學(xué)生參加活動(dòng),為了解這兩所學(xué)校的成績情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
(收集數(shù)據(jù))
從甲、乙兩校各隨機(jī)抽取20名學(xué)生,在這次競賽中它們的成績?nèi)缦拢?/span>
甲 | 30 | 60 | 60 | 70 | 60 | 80 | 30 | 90 | 100 | 60 |
60 | 100 | 80 | 60 | 70 | 60 | 60 | 90 | 60 | 60 | |
乙 | 80 | 90 | 40 | 60 | 80 | 80 | 90 | 40 | 80 | 50 |
80 | 70 | 70 | 70 | 70 | 60 | 80 | 50 | 80 | 80 |
(整理、描述數(shù)據(jù))按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
(說明:優(yōu)秀成績?yōu)?/span>80<x≤100,良好成績?yōu)?/span>50<x≤80,合格成績?yōu)?/span>30≤x≤50.)
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 67 | 60 | 60 |
乙 | 70 | 75 | a |
30≤x≤50 | 50<x≤80 | 80<x≤100 | |
甲 | 2 | 14 | 4 |
乙 | 4 | 14 | 2 |
(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如右表所示:其中a= .
(得出結(jié)論)
(1)小偉同學(xué)說:“這次競賽我得了70分,在我們學(xué)校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是 校的學(xué)生;(填“甲”或“乙”)
(2)老師從乙校隨機(jī)抽取一名學(xué)生的競賽成績,試估計(jì)這名學(xué)生的競賽成績?yōu)閮?yōu)秀的概率為 ;
(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競賽成績較好的學(xué)校,并說明理由.(至少從兩個(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)A,點(diǎn)A在第二象限.過點(diǎn)A作AH⊥x軸,垂足為H.已知點(diǎn)A的橫坐標(biāo)為﹣3,且△AOH的面積為4.5.
(1)求該正比例函數(shù)的解析式.
(2)將正比例函數(shù)y=kx向下平移,使其恰好經(jīng)過點(diǎn)H,求平移后的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com