【題目】一次函數(shù)的圖像為直線.
(1)若直線與正比例函數(shù)的圖像平行,且過點(diǎn)(0,2),求直線的函數(shù)表達(dá)式;
(2)若直線過點(diǎn)(3,0),且與兩坐標(biāo)軸圍成的三角形面積等于3,求的值.
【答案】(1)y=2x-2;(2)b=2或-2.
【解析】
(1)因為直線與直線平行,所以k值相等,即k=2,又因該直線過點(diǎn)(0,2),所以就有-2=2×0+b,從而可求出b的值,于是可解;
(2)直線與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸交于(3,0),然后根據(jù)三角形面積公式列方程求解即可.
解:(1)∵直線與直線平行,
∴k=2,
∴直線即為y=2x+b.
∵直線過點(diǎn)(0,2),
∴-2=2×0+b,
∴b=-2.
∴直線的解析式為y=2x-2.
(2)∵直線與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸交于(3,0),
∴直線與兩坐標(biāo)軸圍成的三角形面積=.
∴=3,
解得b=2或-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)是延長線上一點(diǎn),切于點(diǎn),,是半徑的倍.
求的半徑;
如圖,弦,動點(diǎn)從出發(fā)沿直徑向運(yùn)動的過程中,圖中陰影部分的面積是否發(fā)生變化,若發(fā)生變化,請你說明理由;若不發(fā)生變化,請你求出陰影部分的面積;
如圖,動點(diǎn)從出發(fā),在上按逆時針方向向運(yùn)動.連接,過作的垂線,與的延長線交于點(diǎn),當(dāng)點(diǎn)運(yùn)動到什么位置時,取到最大值?求此時動點(diǎn)所經(jīng)過的弧長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為20cm,∠ABC=120°.動點(diǎn)P、Q同時從點(diǎn)A出發(fā),其中P以4cm/s的速度,沿A→B→C的路線向點(diǎn)C運(yùn)動;Q以2cm/s的速度,沿A→C的路線向點(diǎn)C運(yùn)動.當(dāng)P、Q到達(dá)終點(diǎn)C時,整個運(yùn)動隨之結(jié)束,設(shè)運(yùn)動時間為t秒.
(1)在點(diǎn)P、Q運(yùn)動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;
(2)若點(diǎn)Q關(guān)于菱形ABCD的對角線交點(diǎn)O的對稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N.
①當(dāng)t為何值時,點(diǎn)P、M、N在一直線上?
②當(dāng)點(diǎn)P、M、N不在一直線上時,是否存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于點(diǎn)O,E為AC上一點(diǎn),且AE=OC.
(1)求證:AP=AO;
(2)求證:PE⊥AO;
(3)當(dāng)AE=AC,AB=10時,求線段BO的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的頂點(diǎn)在雙曲線的圖象上,直角邊在軸上,,,,連接,,則的值是( )
A. 4 B. -4 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某電腦公司年的銷售額(萬元)關(guān)于時間(月)之間的函數(shù)圖象,其中前幾個月兩變量之間滿足反比例函數(shù)關(guān)系,后幾個月兩變量之間滿足一次函數(shù)關(guān)系,觀察圖象,回答下列問題:
該年度________月份的銷售額最低;
求出該年度最低的銷售額;
若電腦公司月銷售額不大于萬元,則稱銷售處于淡季.在年中,該電腦公司哪幾個月銷售處于淡季?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC為⊙O的直徑,A為⊙O上的點(diǎn),以BC、AB為邊作ABCD,⊙O交AD于點(diǎn)E,連結(jié)BE,點(diǎn)P為過點(diǎn)B的⊙O的切線上一點(diǎn),連結(jié)PE,且滿足∠PEA=∠ABE.
(1)求證:PB=PE;
(2)若sin∠P=, 求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班為準(zhǔn)備半期考表彰的獎品,計劃從友誼超市購買筆記本和水筆共40件.在獲知某網(wǎng)店有“雙十一”促銷活動后,決定從該網(wǎng)店購買這些獎品.已知筆記本和水筆在這兩家商店的零售價分別如下表,且在友誼超市購買這些獎品需花費(fèi)125元.
(1)班級購買的筆記本和水筆各多少件?
(2)求從網(wǎng)店購買這些獎品可節(jié)省多少元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com