【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高,某社區(qū)為了了解家庭對于文化教育的消費情況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調查,根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖表.

級別

家庭的文化教育消費金額(元)

戶數(shù)

請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:

1)本次被調查的家庭有___________戶,表中___________;

2)在扇形統(tǒng)計圖中,組所在扇形的圓心角為多少度?

3)這個社區(qū)有戶家庭,請你估計年文化教育消費在元以上的家庭有多少戶.

【答案】1)答案為:,;(2組所在扇形的圓心角為;(31200(戶)

【解析】

1)依據(jù)A組或E組數(shù)據(jù),即可得到樣本容量,進而得出m的值;
2)利用圓心角計算公式,即可得到E組所在扇形的圓心角;
3)依據(jù)家庭年文化教育消費10000元以上的家庭所占的比例,即可得到家庭年文化教育消費10000元以上的家庭的數(shù)量.

解:(1)本次被調查的家庭有:36÷24%=150,
m=150-36-27-15-30=42
故答案為:150,42;

2組所在扇形的圓心角為;

3)年文化教育消費元以上的家庭有(戶)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠計劃生產(chǎn)兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155.

1)甲、乙兩種材料每千克分別是多少元?

2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過9900元,且生產(chǎn)產(chǎn)品不少于38件,問符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?

3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費40元,生產(chǎn)一件產(chǎn)品需加工費50元,應選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費+加工費)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程

(1)求證:不論k取什么實數(shù)值,這個方程總有實數(shù)根;

(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個方程的兩個根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有點A(10),點A第一次跳動至點,第二次點跳動至點第三次點跳動至點,第四次點跳動至點……,依此規(guī)律跳動下去,則點與點之間的距離是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三角形中,點在線段上,于點,點在直線上,作直線,過點作直線交直線于點.

1 2 3

(1)在如圖1所示的情況下,求證:;

(2)若三角形不變,,兩點的位置也不變,點在直線上運動.

①當點在三角形內部時,說明的數(shù)量關系:

②當點在三角形外部時,①中結論是否依然成立?若不成立,又有怎樣的數(shù)量關系?請在圖2中畫圖探究,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為66萬元;本周已售出2輛A型車和1輛B型車,銷售額為42萬元.

(1)求每輛A型車和B型車的售價各為多少元.

(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不超過84萬元.問最多可以購買多少輛B型號的新能源汽車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,劣弧BC=劣弧BE,BD∥CE,連接AE并延長交BDD

求證:1AC=AE;

2AB2=ACAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來國內生產(chǎn)總值年增長率的變化情況如圖所示,從圖上看,下列結論中不正確的是(

A. 1995—1999年國內生產(chǎn)總值的年增長率逐年減小

B. 2000年國內生產(chǎn)總值的年增長率開始回升

C. 7年中每年的國內生產(chǎn)總值不斷增長

D. 7年中每年國內生產(chǎn)總值有增有減

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個不相等的實數(shù)a,b滿足a2+b2=5

1)若ab=2,求a+b的值;

2)若a22a=m,b22b=m,求a+bm的值.

查看答案和解析>>

同步練習冊答案