已知方程ax2+bx+cy=0(a≠0、b、c為常數(shù)),請你通過變形把它寫成你所熟悉的一個函數(shù)表達式的形式.則函數(shù)表達式為    ,成立的條件是    ,是    函數(shù).
【答案】分析:函數(shù)通常情況下是用x表示y.注意分母不為0,二次項的系數(shù)不為0.
解答:解:整理得函數(shù)表達式為y=-x2-x,成立的條件是a≠0,c≠0,是二次函數(shù).
點評:本題考查常用的用一個字母表示出另一字母的函數(shù),注意自變量的取值,及二次項系數(shù)的取值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

38、給出下列四個判斷:(1)線段是軸對稱圖形,它只有一條對稱軸;(2)各邊相等的圓外切多邊形是正多方形;(3)一組對邊相等,一條對角線被另一條對角線平分的四邊形是平行四邊形;(4)已知方程ax2+bx+c=0中,a、b、c是實數(shù),且b2-4ac>0,那么這個方程有兩個不相等的實數(shù)根.
其中不正確的判斷有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+cy=0(a,b,c是常數(shù)),請你通過變形把它寫成你所熟悉的一個函數(shù)表達式的形式,則函數(shù)表達式為
y=-
a
c
x2-
b
c
x
y=-
a
c
x2-
b
c
x
,成立的條件是
a≠0且c≠0
a≠0且c≠0
,是
二次
二次
函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+c=0(a≠0)有一根是1,那么a+b+c=
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+c=0(a≠0),請你寫一個一元二次方程,使得a=1且b2-4ac=1:
x2+3x+2=0
x2+3x+2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程ax2+bx+c=0有兩個正根,則下述結(jié)論:(1)a,b,c>0(2)a,b,c<0(3)a>0,b,c<0(4)a<0,b,c>0中,肯定錯誤的結(jié)論有幾個( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案