【題目】如圖,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度數(shù).有同學(xué)用了下面的方法.但由于一時(shí)犯急沒有寫完整,請(qǐng)你幫他添寫完整. 解:∵AD∥CB( 已知 )
∴∠C+∠ADC=180° ()
又∵∠A=∠C ()
∴∠A+∠ADC=180° ()
∴AB∥CD ()
∴∠BDC=∠ABD=32° ().
【答案】兩直線平行,同旁內(nèi)角互補(bǔ);已知;等量代換;同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等
【解析】解:∵AD∥CB( 已知 ), ∴∠C+∠ADC=180° (兩直線平行,同旁內(nèi)角互補(bǔ)).
又∵∠A=∠C (已知),
∴∠A+∠ADC=180° (等量代換),
∴AB∥CD (同旁內(nèi)角互補(bǔ),兩直線平行),
∴∠BDC=∠ABD=32° (兩直線平行,內(nèi)錯(cuò)角相等).
所以答案是:兩直線平行,同旁內(nèi)角互補(bǔ);已知;等量代換;同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行線的判定與性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于點(diǎn)D,在線段AD上任取一點(diǎn)P(點(diǎn)A除外),過點(diǎn)P作EF∥AB,分別交AC,BC于點(diǎn)E和點(diǎn)F,作PQ∥AC,交AB于點(diǎn)Q,連接QE.
(1)求證:四邊形AEPQ為菱形;
(2)當(dāng)點(diǎn)P在何處時(shí),菱形AEPQ的面積為四邊形EFBQ面積的一半?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不等式組的解集在數(shù)軸上的表示如下圖,則這個(gè)不等式組的解集是( )
A.x<3
B.x≥-1
C.-1<x≤3
D.-1≤x<3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com