【題目】如圖,在平面直角坐標系中,線段AB的端點坐標分別為A(0,6)、B(6,6).點Q在線段AB上,以Q為項點的拋物線y=﹣x2+bx+c與y軸交于點D,與x軸的一個交點為C.設(shè)點Q的橫坐標為m,點C的橫坐標為n(n>m).
(1)當m=0時,求n的值.
(2)求線段AD的長(用含m的式子表示);
(3)點P(2,0)在x軸上,設(shè)△BPD的面積為S,求S與m的關(guān)系式;
(4)當△DCQ是以QC為直角邊的直角三角形時,直接寫出m的值.
【答案】(1)n=3;(2)AD=;(3)S與m的關(guān)系式為;(4)當m=或時,△DCQ是以QC為直角邊的直角三角形.
【解析】
(1)先求拋物線表達式,當y=0時,可求n的值;
(2)先求拋物線解析式,可求點D坐標,即可求AD的長;
(3)如圖1,延長BP交y軸于點M,通過證明△MOP∽△MAB,可得,可得,OM=3,AM=9.分兩種情況討論,由面積關(guān)系可求解;
(4)分兩種情況討論,由相似三角形的性質(zhì)可求解.
解:(1)當m=0時,點Q坐標為(0,6),
∴拋物線表達式為y=ax2+6.
根據(jù)題意可知,
∴拋物線表達式為.
當y=0時,,
解得x=±3.
由題意n>m,
∴n=3;
(2)∵點Q坐標為(m,6),
∴拋物線表達式為.
當x=0時,.
∴點D坐標為(0,),
∵點A坐標為(0,6),
∴AD=;
(3)如圖1,延長BP交y軸于點M,
∵OP∥AB,
∴△MOP∽△MAB,
∴.
∴
∵AO=6,
∴OM=3,AM=9.
當AD<AM,即時,
S==.
當AD>AM,即時,
S==.
綜上,S與m的關(guān)系式為
(4)如圖2,過點Q作QH⊥OC,
∵點Q坐標為(m,6),
∴拋物線表達式為.
當x=0時,.
∴點D坐標為(0,).
∴OD=m2﹣6,
當y=0時,0=﹣(x﹣m)2+6,
∴x1=3+m,x2=﹣3+m,
∴點C(3+m,0)
∴OC=3+m,CH=3,
∵∠OCD=90°,
∴∠OCQ+∠OCD=90°,且∠OCQ+∠CQH=90°,
∴∠CQH=∠DCO,且∠QHC=∠COD=90°,
∴△CQH∽△DCO,
∴,
∴,
∴m1=﹣3(不合題意舍去),m2=,
如圖3,過點Q作QH⊥OC,
同理可證△ADQ∽△HCQ,
∴
∴
∴m1=0(不合題意舍去),m2=,
綜上所述:當m=或時,△DCQ是以QC為直角邊的直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求線段BC的長;
(2)當0≤y≤3時,請直接寫出x的范圍;
(3)點P是拋物線上位于第一象限的一個動點,連接CP,當∠BCP=90o時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC內(nèi)一點,BD⊥CD,E、F、G、H分別是邊AB、BD、CD、AC的中點.若AD=10,BD=8,CD=6,則四邊形EFGH的周長是( 。
A.24B.20C.12D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10cm,BC=8cm,點P從點A開始沿射線AC向點C以2cm/s的速度移動,與此同時,點Q從點C開始沿邊CB向點B以1cm/s的速度移動.如果P、Q分別從A、C同時出發(fā),運動的時間為ts,當點Q運動到點B時,兩點停止運動.
(1)當點P在線段AC上運動時,P、C兩點之間的距離 cm.(用含t的代數(shù)式表示)
(2)在運動的過程中,是否存在某一時刻,使得△PQC的面積是△ABC面積的.若存在,求t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在硬地上拋擲一枚圖釘,通常會出現(xiàn)兩種情況:
下面是小明和同學做“拋擲圖釘實驗”獲得的數(shù)據(jù):
拋擲次數(shù)n | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
針尖不著地的頻數(shù)m | 63 | 120 | 186 | 252 | 310 | 360 | 434 | 488 | 549 | 610 |
針尖不著地的頻率 | 0.63 | 0.60 | 0.63 | 0.60 | 0.62 | 0.61 |
(1)填寫表中的空格;
(2)畫出該實驗中,拋擲圖釘釘尖不著地頻率的折線統(tǒng)計圖;
(3)根據(jù)“拋擲圖釘實驗”的結(jié)果,估計“釘尖著地”的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.
(1)請你用直尺和圓規(guī)補全這個輸水管道的圓形截面(保留作圖痕跡);
(2)若這個輸水管道有水部分的水面寬AB=24cm,水面最深地方的高度為8cm,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在與中,,,,,,射線與直線交于點P.
(1)求證:;
(2)若,求的值;
(3)若繞點B逆時針旋轉(zhuǎn)一周,直接寫出線段的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,二次函數(shù)()圖象的頂點為,與軸交于、兩點(在點右側(cè)),點,關(guān)于直線對稱.
(1)坐標為 ;坐標為: ;坐標為 ;
(2)求二次函數(shù)解析式;
(3)在直線上是否存在一點,使得最大?若不存在,請說明理由:若存在,請求出此時的面積;
(4)過點作直線交直線于點,,分別為直線和直線上的兩個動點,連接、、,求和的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com