【題目】已知函數(shù)y=|x2﹣2x﹣3|的大致圖象如圖所示,如果方程|x2﹣2x﹣3|=m(m為實數(shù))有2個不相等的實數(shù)根,則m的取值范圍是__.
【答案】m=0或m>4.
【解析】
有2個不相等的實數(shù)根,其含義是當(dāng)y=m時,對應(yīng)的x值有兩個不同的數(shù)值,根據(jù)圖象可以看出與x軸有兩個交點,所以此時m=0;當(dāng)y取的值比拋物線頂點處值大時,對應(yīng)的x值有兩個,所以m值應(yīng)該大于拋物線頂點的縱坐標(biāo).綜合表述即可.
從圖象可以看出當(dāng)y=0時,y=|x2﹣2x﹣3|的x值對應(yīng)兩個不等實數(shù)根,
即m=0時,方程|x2﹣2x﹣3|=m(m為實數(shù))有2個不相等的實數(shù)根;
從圖象可出y的值取其拋物線部分的頂點處縱坐標(biāo)值時,在整個函數(shù)圖象上對應(yīng)的x的值有三個,
當(dāng)y的值比拋物線頂點處縱坐標(biāo)的值大時,對于整個函數(shù)圖象上對應(yīng)的x值有兩個不相等的實數(shù)根.
|x2﹣2x﹣3|=|(x﹣1)2﹣4|,其最大值為4,所以當(dāng)m>4時,方程|x2﹣2x﹣3|=m(m為實數(shù))有2個不相等的實數(shù)根,
綜上所述當(dāng)m=0或m>4時,方程|x2﹣2x﹣3|=m(m為實數(shù))有2個不相等的實數(shù)根.
故答案為m=0或m>4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣A、B兩類薄弱學(xué)校全部進行改造.根據(jù)預(yù)算,共需資金1555萬元改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬元
(1)改造一所A類學(xué)校和一所B類學(xué)校所需的資金分別是多少萬元?
(2)根據(jù)我市教育局規(guī)劃計劃今年對該縣A、B兩類學(xué)校進行改造,要求改造的A類學(xué)校是B類學(xué)校的2倍多2所,在計劃投入資金不超過1555萬元的條件下,至多能改造多少所A類學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點P是△ABC內(nèi)部或邊上的點(頂點除外),在△PAB,△PBC,△PCA中,若至少有一個三角形與△ABC相似,則稱點P是△ABC的自相似點.
例如:如圖1,點P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點P為△ABC的自相似點.
請你運用所學(xué)知識,結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點M是曲線C:上的任意一點,點N是x軸正半軸上的任意一點.
(1) 如圖2,點P是OM上一點,∠ONP=∠M, 試說明點P是△MON的自相似點; 當(dāng)點M的坐標(biāo)是,點N的坐標(biāo)是時,求點P 的坐標(biāo);
(2) 如圖3,當(dāng)點M的坐標(biāo)是,點N的坐標(biāo)是時,求△MON的自相似點的坐標(biāo);
(3) 是否存在點M和點N,使△MON無自相似點,?若存在,請直接寫出這兩點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)最美恩施,一旅游投資公司擬定在某景區(qū)用茶花和月季打造一片人工花海,經(jīng)市場調(diào)查,購買株茶花與株月季的費用相同,購買株茶花與株月季共需元.
(1)求茶花和月季的銷售單價;
(2)該景區(qū)至少需要茶花月季共株,要求茶花比月季多株,但訂購兩種花的總費用不超過元,該旅游投資公司怎樣購買所需總費用最低,最低費用是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,點與點在的同側(cè),且.
(1)如圖1,點不與點重合,連結(jié)交于點.設(shè)求關(guān)于的函數(shù)解析式,寫出自變量的取值范圍;
(2)是否存在點,使與相似,若存在,求的長;若不存在,請說明理由;
(3)如圖2,過點作垂足為.將以點為圓心,為半徑的圓記為.若點到上點的距離的最小值為,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,點D在邊AC上,且AB2=ADAC.
(1)如圖1.求證:∠ABD=∠C.
(2)如圖2.在邊BC上截取BE=BD,ED、BA的延長線交于點F,求證:.
(3)在 (2)的條件下,若AD=4,CD=5,cos∠BAC=,試直接寫出△FBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用36000元購進甲、乙兩種商品,銷售完后共獲利6000元.其中甲種商品每件進價120元,售價138元;乙種商品每件進價100元,售價120元.
(1)該商場購進甲、乙兩種商品各多少件?
(2)商場第二次以原進價購進甲、乙兩種商品,購進乙種商品的件數(shù)不變,而購進甲種商品的件數(shù)是第一次的2倍,甲種商品按原售價出售,而乙種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于8160元,乙種商品最低售價為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(2-a)x2+5x-3=0有實數(shù)解,則整數(shù)a的最大值是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑, OD∥BC交⊙O于點D,交AC于點E,連接AD,BD,CD.
(1)求證:AD=CD;
(2)若AB=10,cos∠ABC=,求tan∠DBC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com