【題目】已知:x+2yz9,2xy+8z18,求x+y+z的值.

【答案】9

【解析】

將方程①乘以3,然后與方程②相加,可得x+y+z的整數(shù)倍的值,從而求得x+y+z的值.

x+2yz9①,2xy+8z18②,

×3,得3x+6y3z27③,

+②得5x+5y+5z45,

兩邊同時除以5,得x+y+z9,

x+y+z的值為9.

故答案為:9.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價.水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖.如圖所示,下面四個推斷( 。
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過180.

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列四個命題:對角線互相垂直平分的四邊形是正方形;對角線互相垂直且相等的四邊形是菱形;對角線互相平分且相等的四邊形是矩形;對角線互相平分、相等且垂直的四邊形是正方形,其中真命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為1,點P為正方形內(nèi)一動點,若點M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點N,連結(jié)CM.

(1)如圖一,若點M在線段AB上,求證:AP⊥BN;AM=AN;

(2)①如圖二,在點P運動過程中,滿足△PBC∽△PAM的點M在AB的延長線上時,AP⊥BN和AM=AN是否成立?(不需說明理由)

②是否存在滿足條件的點P,使得PC=?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:4×(2)36÷(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC,AE平分∠BAC,∠B=20°,∠C=30°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE相交于F,且BF=AC。求證:ED平分∠FEC。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算-3+2-1=( )
A.0
B.1
C.-2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C:,直線l:y=kx(k>0),當k=1時,拋物線C與直線l只有一個公共點.

(1)求m的值;

(2)若直線l與拋物線C交于不同的兩點A,B,直線l與直線l1:y=﹣3x+b交于點P,且,求b的值;

(3)在(2)的條件下,設直線l1與y軸交于點Q,問:是否在實數(shù)k使SAPQ=SBPQ?若存在,求k的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案