三個________為邊構(gòu)成直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料并解答問題:
我國是最早了解和應(yīng)用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形網(wǎng)格中,小格的頂點叫做格點,每個小正方形的邊長為1,小方按下列要求作圖:①在正方形網(wǎng)格的三條不同實線上各取一個格點,使其中任意兩點不在同一實線上;②連接三個格點,使之構(gòu)成直角三角形,小方在圖①中作出了Rt△ABC.
(1)請你按照同樣的要求,在右邊的正方形網(wǎng)格中各畫出一個直角三角形,并使二個網(wǎng)格中的直角三角形不全等.
(2)圖①中Rt△ABC的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點A(?3,5)在拋物線y=x2+c的圖象上,點P從拋物線的頂點Q出發(fā),沿y軸以每秒1個單位的速度向正方向運動,連結(jié)AP并延長,交拋物線于點B,分別過點A、B作x軸的垂線,垂足為C、D,連結(jié)AQ、BQ.
【小題1】求拋物線的解析式;
【小題2】當(dāng)A、Q、B三點構(gòu)成以AQ為直角邊的直角三角形時,求點P離開點Q多少時間?
【小題3】試探索當(dāng)AP、AC、BP、BD與一個平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)時,點P離開點Q的時刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省太倉市初中畢業(yè)暨升學(xué)考試模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知點A(?3,5)在拋物線y=x2+c的圖象上,點P從拋物線的頂點Q出發(fā),沿y軸以每秒1個單位的速度向正方向運動,連結(jié)AP并延長,交拋物線于點B,分別過點A、B作x軸的垂線,垂足為C、D,連結(jié)AQ、BQ.
【小題1】求拋物線的解析式;
【小題2】當(dāng)A、Q、B三點構(gòu)成以AQ為直角邊的直角三角形時,求點P離開點Q多少時間?
【小題3】試探索當(dāng)AP、AC、BP、BD與一個平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)時,點P離開點Q的時刻.

查看答案和解析>>

同步練習(xí)冊答案