【題目】如圖,點I是△ABC的內(nèi)心,AI的延長線交邊BC于點D,交△ABC的外接圓于點E.
(1)求證:IE=BE;
(2)若IE=4,AE=8,求DE的長.
【答案】(1)詳見解析;(2)DE=2.
【解析】
(1)連接IB,只需證明∠IBE=∠BIE.根據(jù)三角形的外角的性質(zhì)、三角形的內(nèi)心是三角形的角平分線的交點以及圓周角定理的推論即可證明;
(2)IE的長,即是BE的長,則可以把要求的線段和已知的線段構(gòu)造到兩個相似三角形中,進(jìn)行求解.
解: 連結(jié)IB.
∵點I是△ABC的內(nèi)心,
∴∠BAD=∠CAD,∠ABI=∠IBD.
又∵∠BIE=∠BAD+∠ABI,
∴∠BIE=∠CAD+∠IBD=∠DBE+∠IBD=∠IBE,
∴BE=IE;
(2)在△BED和△AEB中,
∵∠EBD=∠CAD=∠EAB,∠BED=∠AEB,
∴△BED∽△AEB,
∴=.
∵IE=4,
∴BE=4.
∵AE=8,
∴DE==2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鳳城商場經(jīng)銷一種高檔水果,售價為每千克50元
(1)連續(xù)兩次降價后售價為每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知這種水果的進(jìn)價為每千克40元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),若每千克漲價1元,日銷售量將減少20千克,每千克應(yīng)漲價多少元才能使每天獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某大學(xué)的樓門是一拋物線形水泥建筑物,大門的地面寬度為,兩側(cè)距離地面高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為,則校門的高約為(精確到,水泥建筑物的厚度忽略不計)( )
A. 9.2m B. 9.1m C. 9.0m D. 8.9m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分線,與BC相交于點E,點G是BC上一點,E為線段BG的中點,DG⊥BC于點G,交AC于點F,則FG的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB與扇形OCD的圓心角都是90°,連接AC,BD.
(1)求證:AC=BD;
(2)若OA=2 cm,OC=1 cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,兩條寬度都為2cm的紙條交叉重疊放在一起,且它們的交角為α,則它們重疊部分(圖中陰影部分)的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 內(nèi)接于半⊙O,AB 為直徑,弦 AD 平分∠CAB,DE 切⊙O 于點 D.
(1) 求證:DE∥BC
(2) 若 AD=BC,⊙O 半徑為 2,求∠CAD 與弧CD圍成區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=Rt∠,AB=2,∠B=30°,正六邊形DEFGHI完全落在Rt△ABC內(nèi),且DE在BC邊上,F在AC邊上,H在AB邊上,則正六邊形DEFGHI的邊長為_____,過I作A1C1∥AC,然后在△A1C1B內(nèi)用同樣的方法作第二個正六邊形,按照上面的步驟繼續(xù)下去,則第n個正六邊形的邊長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com