【題目】已知拋物線與x軸分別交于,兩點,與y軸交于點C.
(1)求拋物線的表達式及頂點D的坐標(biāo);
(2)點F是線段AD上一個動點.
①如圖1,設(shè),當(dāng)k為何值時,.
②如圖2,以A,F,O為頂點的三角形是否與相似?若相似,求出點F的坐標(biāo);若不相似,請說明理由.
【答案】(1),D的坐標(biāo)為;(2)①;②以A,F,O為頂點的三角形與相似,F點的坐標(biāo)為或.
【解析】
(1)將A、B兩點的坐標(biāo)代入二次函數(shù)解析式,用待定系數(shù)法即求出拋物線對應(yīng)的函數(shù)表達式,可求得頂點;
(2)①由A、C、D三點的坐標(biāo)求出,,,可得為直角三角形,若,則點F為AD的中點,可求出k的值;
②由條件可判斷,則,若以A,F,O為頂點的三角形與相似,可分兩種情況考慮:當(dāng)或時,可分別求出點F的坐標(biāo).
(1)拋物線過點,,
,解得:,
拋物線解析式為;
,
頂點D的坐標(biāo)為;
(2)①在中,,,
,
,,,
,
,
,
為直角三角形,且,
,
F為AD的中點,
,
;
②在中,,
在中,,
,
,
,
,
若以A,F,O為頂點的三角形與相似,則可分兩種情況考慮:
當(dāng)時,,
,
設(shè)直線BC的解析式為,
,解得:,
直線BC的解析式為,
直線OF的解析式為,
設(shè)直線AD的解析式為,
,解得:,
直線AD的解析式為,
,解得:,
.
當(dāng)時,,
,
,
直線OF的解析式為,
,解得:,
,
綜合以上可得F點的坐標(biāo)為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是邊上的一點,,,將正方形邊沿折疊到,延長交于.連接,現(xiàn)在有如下四個結(jié)論:①;②;③∥;④; 其中結(jié)論正確的個數(shù)是( )
A.1B.2
C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖,四邊形中,,,,,,為邊上一動點,連接、.
問題探究
(1)如圖1,若,則的長為__________.
(2)如圖2,請求出周長的最小值;
(3)如圖3,過點作于點,過點分別作于,于點,連接
①是否存在點,使得的面積最大?若存在,求出面積的最大值,若不存在,請說明理由;
②請直接寫出面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線交軸于點,交軸于點,若圖中陰影部分的三角形都是等腰直角三角形,則從左往右數(shù)第5個陰影三角形的面積是_____,第2019個陰影三角形的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形的對角線,,邊在其所在直線上向右平移,將通過平移得到的線段記為,連結(jié),,并過點作,垂足為,連接和,在平移變換過程中,設(shè)的面積為,,則的最大值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形對角線的四等分點叫做矩形的奇特點.如圖,在平面直角坐標(biāo)系中,點,為拋物線上的兩個動點(在的左側(cè)),且軸,以為邊畫矩形,原點在邊上.
(1)如圖1,當(dāng)矩形為正方形時,求該矩形在第一象限內(nèi)的奇特點的坐標(biāo).
(2)如圖2,在點,的運動過程中,連結(jié)交拋物線于點.
①求證:點為矩形的奇特點;
②連結(jié),若,拋物線上的點為矩形的另一奇特點,求經(jīng)過,,三點的圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點D的坐標(biāo);
(2)求拋物線的對稱軸和函數(shù)表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中有一個正六邊形EFGHIJ,其頂點均在矩形的邊上,邊EJ和邊GH分別在矩形的邊AD和BC上,則=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com