【題目】如圖,五個正方形面積分別記為S1,S2,S3,S4S5,若S12,S33,S55,則S2+S4_____

【答案】13

【解析】

根據(jù)全等三角形的判定定理得到△ABD≌△CEB,根據(jù)全等三角形的性質得到ADBC,ABCE,根據(jù)勾股定理得到BD2AD2+AB2AD2+CE2,于是易得結論.

解:如圖,∵∠DAB=∠BCE=∠DBE90°,

∴∠1+3=∠1+290°,

∴∠3=∠2

在△ABD與△CEB中,

,

∴△ABD≌△CEBAAS),

ADBC,ABCE,

BD2AD2+AB2AD2+CE2

S2S1+S35,

同理,S4S3+S58,

S2+S413,

故答案為:13

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在3×3的方格中,點A、B、C、D、E、F都是格點,從A、D、E、F四點中任意取一點,以所取點及B、C為頂點畫三角形,所畫三角形是直角三角形的概率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖二次函數(shù) 的圖象經過A(-1,0)和B(3,0)兩點,且交 軸于點C.

(1)試確定 、 的值;
(2)若點M為此拋物線的頂點,求△MBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點A2 019的坐標為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了比較市場上甲、乙兩種電子鐘每日走時誤差的情況,從這兩種電子鐘中,各隨機抽取10臺進行測試,兩種電子鐘走時誤差的數(shù)據(jù)如下表(單位:秒):

編號

類型

甲種電子鐘

1

-3

-4

4

2

-2

2

-1

-1

2

乙種電子鐘

4

-3

-1

2

-2

1

-2

2

-2

1

(1) 計算甲、乙兩種電子鐘走時誤差的平均數(shù);

(2) 計算甲、乙兩種電子鐘走時誤差的方差;

(3) 根據(jù)經驗,走時穩(wěn)定性較好的電子鐘質量更優(yōu).若兩種類型的電子鐘價格相同,請問:你買哪種電子鐘?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,邊長為4,點F在AB邊上,E為射線AD上一點,正方形ABCD沿直線EF折疊,點A落在G處,已知點G恰好在以AB為直徑的圓上,則CG的最小值等于( )

A.0
B.2
C.4﹣2
D.2 ﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀小強同學數(shù)學作業(yè)本上的截圖內容并完成任務:

解方程組

解:由①,得,③ 第一步

把③代入①,得.第二步

整理得,.第三步

因為可以取任意實數(shù),所以原方程組有無數(shù)個解 第四步

任務:(1)這種解方程組的方法稱為 ;

2)利用此方法解方程組的過程中所體現(xiàn)的數(shù)學思想是 ;(請你填寫正確選項)

A.轉化思想 B.函數(shù)思想 C.數(shù)形結合思想 D.公理化思想

3)小強的解法正確嗎? (填正確或不正確),如果不正確,請指出錯在第 步,請選擇恰當?shù)慕夥匠探M的方法解該方程組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,BECD于點E,點FAB上,且AF=CE,連接DF

(1)求證:四邊形BEDF是矩形;

(2)連接CF,若CF平分∠BCD,且CE=3,BE=4,求矩形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3mBC=12m,CD=13mDA=4m,若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

同步練習冊答案