如圖,ABCD為正方形,O為AC、BD的交點(diǎn),△DCE為Rt△,∠CED=90°,∠DCE=30°,若OE=,則正方形的面積為( 。
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
B
解:如圖,過點(diǎn)O作OM⊥CE于M,作ON⊥DE交ED的延長線于N,
∵∠CED=90°,
∴四邊形OMEN是矩形,
∴∠MON=90°,
∵∠COM+∠DOM=∠DON+∠DOM,
∴∠COM=∠DON,
∵四邊形ABCD是正方形,
∴OC=OD,
在△COM和△DON中,
,
∴△COM≌△DON(AAS),
∴OM=ON,
∴四邊形OMEN是正方形,
設(shè)正方形ABCD的邊長為2a,則OC=OD=×2a=a,
∵∠CED=90°,∠DCE=30°,
∴DE=CD=a,
由勾股定理得,CE===a,
∴四邊形OCED的面積=a•a+•(a)•(a)=×()2,
解得a2=1,
所以,正方形ABCD的面積=(2a)2=4a2=4×1=4.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)定點(diǎn),點(diǎn)P是雙曲線y=(x>0)上的一個(gè)動(dòng)點(diǎn),PB⊥y軸于點(diǎn)B,當(dāng)點(diǎn)P的橫坐標(biāo)逐漸增大時(shí),四邊形OAPB的面積將會(huì)( 。
| A. | 逐漸增大 | B. | 不變 | C. | 逐漸減小 | D. | 先增大后減小 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=ax2+x+c與x軸交于點(diǎn)A(4,0)、B(﹣1,0),與y軸交于點(diǎn)C,連接AC,點(diǎn)M是線段OA上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、A重合),過點(diǎn)M作MN∥AC,交OC于點(diǎn)N,將△OMN沿直線MN折疊,點(diǎn)O的對應(yīng)點(diǎn)O′落在第一象限內(nèi),設(shè)OM=t,△O′MN與梯形AMNC重合部分面積為S.
(1)求拋物線的解析式;
(2)①當(dāng)點(diǎn)O′落在AC上時(shí),請直接寫出此時(shí)t的值;
②求S與t的函數(shù)關(guān)系式;
(3)在點(diǎn)M運(yùn)動(dòng)的過程中,請直接寫出以O(shè)、B、C、O′為頂點(diǎn)的四邊形分別是等腰梯形和平行四邊形時(shí)所對應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的方程x2﹣(2m﹣1)x+m2﹣1=0的兩實(shí)數(shù)根為x1,x2,且x12+x22=3,則m=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O的直徑CD垂直于弦AB,垂足為E,F(xiàn)為DC延長線上一點(diǎn),且∠CBF=∠CDB.
(1)求證:FB為⊙O的切線;
(2)若AB=8,CE=2,求sin∠F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com