【題目】觀察下列等式:

1個等式:a1

2個等式:a2

3個等式:a3

4個等式:a4

請解答下列問題:

1)按以上規(guī)律列出第5個等式:a5   

2)用含有n的代數(shù)式表示第n個等式:an   n為正整數(shù)):

3)求a1+a2+a3+a4+……+a100的值;

4)探究計算:

【答案】1;(2:(3;(4

【解析】

1)根據(jù)題目中的式子的特點,可以寫出第5個等式;

2)根據(jù)題目中式子的特點,可以寫出第n個等式;

3)根據(jù)(2)中的結果,可以計算出所求式子的值;

4)根據(jù)題目中式子的特點,可以計算出所求式子的值.

解:(1)∵第1個等式:a1×(1-

2個等式:a2×(

3個等式:a3×(

4個等式:a4×(

∴第5個等式:a5=,

故答案為:

2)由題意可得,

n個等式:an×(),

故答案為:);

3a1+a2+a3+a4+……+a100

×(1+×(+×(+×(++×(

×(1+-+-++

×(1

;

4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD內(nèi)找一點O,使它到四邊形四個頂點的距離之和OA+OB+OC+OD最小,正確的作法是連接ACBD交于點O,則點O就是要找的點,請你用所學過的數(shù)學知識解釋這一道理__________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線BD=12cm,AC=16cm,AC,BD相交于點O,若E,F(xiàn)AC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為0.5cm/s.

(1)當EF不重合時,四邊形DEBF是平行四邊形嗎?說明理由;

(2)點 E,F(xiàn)AC上運動過程中,以D、E、B、F為頂點的四邊形是否可能為矩形?如能,求出此時的運動時間t的值;如不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的頂點O在坐標原點,頂點A的坐標為(4,3)

(1)頂點的坐標為( , );

(2)現(xiàn)有動點P、Q分別從C、A同時出發(fā),點P沿線段CB向終點B運動,速度為每秒1個單位,點Q沿折線A→O→C向終點C運動,速度為每秒k個單位,當運動時間為2秒時,以P、Q、C為頂點的三角形是等腰三角形,求此時k的值.

(3)若正方形OABC以每秒個單位的速度沿射線AO下滑,直至頂點C落到軸上時停止下

滑.設正方形OABC軸下方部分的面積為S,求S關于滑行時間的函數(shù)關系式,并寫出相應自變量的取值范圍.

(備用圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完。設分配給甲店A型產(chǎn)品x件,兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:

A型利潤

B型利潤

甲店

200

170

乙店

160

150

1)分配給乙店B型產(chǎn)品 件(用含x的代數(shù)式表示)。

2)設這家公司賣出這100件產(chǎn)品的總利潤為W(元),求W關于x的函數(shù)關系式,并直接寫出x的取值范圍。

3)若公司要求總利潤不低于17560元,有幾種不同分配方案?哪種方案總利潤最大?請求出最大利潤。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB,垂足為H,連結AC,過上一點EEGACCD的延長線于點G,連結AECD于點F,且EG=FG,連結CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是⊙O的切線;

(3)延長ABGE的延長線于點M,若tanG=,AH=3,求EM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小高從家騎車去單位上班,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達工作單位,所用的時間x(分鐘)與離家距離y(千米)的關系如圖所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上班時一致,那么他從單位到家需要的時間是_______分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A05), Bab),且a,b滿足b1

(1)如圖,求線段AB的長;

(2)如圖,直線CDx軸、y軸正半軸分別交于點C,D,∠OCD45°,第四象限的點Pmn)在直線CD上,且mn=-6,求OP2OC2的值;

(3)如圖,若點D1,0),求∠DAO +∠BAO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與化簡

1)計算:(6m2+4m3+22m24m+1);

2)先化簡,再求值.4xy[x2+5xyy2)﹣2x2+3xyy2],其中:x=﹣1y2

查看答案和解析>>

同步練習冊答案