【題目】如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是(
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

【答案】C
【解析】解:∵點A坐標為(0,a), ∴點A在該平面直角坐標系的y軸上,
∵點C、D的坐標為(b,m),(c,m),
∴點C、D關于y軸對稱,
∵正五邊形ABCDE是軸對稱圖形,
∴該平面直角坐標系經(jīng)過點A的y軸是正五邊形ABCDE的一條對稱軸,
∴點B、E也關于y軸對稱,
∵點B的坐標為(﹣3,2),
∴點E的坐標為(3,2).
故選:C.
由題目中A點坐標特征推導得出平面直角坐標系y軸的位置,再通過C、D點坐標特征結合正五邊形的軸對稱性質就可以得出E點坐標了.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008;

【答案】1﹣10m2n3+8m3n2;(22x﹣40;(3)1

【解析】試題分析:1)原式利用單項式乘以多項式法則計算即可得到結果;

2)原式兩項利用多項式乘以多項式法則計算,去括號合并即可得到結果;

3)先根據(jù)冪的乘方的逆運算,把()2 016化為()1008,再根據(jù)積的乘方的逆運算計算即可.

試題解析:(1原式=5mn2)(﹣2mn+﹣4m2n)(﹣2mn=﹣10m2n3+8m3n2

2原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40

3)原式=()1008×161 008=(×16)1 008=1.

型】解答
束】
19

【題目】如圖,方格圖中每個小正方形的邊長為1,點A、BC都是格點.

1)畫出△ABC關于直線BM對稱的△A1B1C1;

2)寫出AA1的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB=30°,點A坐標為(2,0),過A作AA1⊥OB,垂足為點A1;過點A1作A1A2⊥x軸,垂足為點A2;再過點A2作A2A3⊥OB,垂足為點A3;則A2A3=;再過點A3作A3A4⊥x軸,垂足為點A4…;這樣一直作下去,則A2017的縱坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將RtABC沿射線BC方向平移得到DEF,已知AB=16cm,BE=10cm,DH=6cm,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣A、B兩類薄弱學校全部進行改造,根據(jù)預算,共需資金1575萬元,改造一所A類學校和兩所B類學校共需資金230萬元;改造兩所A類學校和一所B類學校共需資金205萬元.

(1)改造一所A類學校和一所B類學校所需的資金分別是多少萬元?

(2我市計劃今年對該縣A、B兩類學校共6所進行改造,改造資金由國家財政和地方財政共同承擔。若今年國家財政撥付的改造資金不超過400萬元;地方財政投入的改造資金不少于70萬元,其中地方財政投入到A、B兩類學校的改造資金分別為每所10萬元和15萬元。請你通過計算求出有幾種改造方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若干個半徑為2個單位長度,圓心角為60°的扇形組成一條連續(xù)的曲線,點P從原點O出發(fā),沿這條曲線向右上下起伏運動,點在直線上的速度為2個單位長度/秒,點在弧線上的速度為 個單位長度/秒,則2017秒時,點P的坐標是(
A.(2017,0)
B.(2017,
C.(2017,﹣
D.(2016,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶,或可以求出一些不規(guī)則圖形的面積.

(1)如圖1,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么結論,請寫出來.

(2)如圖2,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF,若兩正方形的邊長滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,(1)指出DCABAC所截得的內錯角;

(2)指出ADBCAE所截得的同位角;

(3)指出∠4與∠7,∠2與∠6,∠ADC與∠DAB各是什么關系的角,并指出各是哪兩條直線被哪一條直線所截形成的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)要把192噸物資從我市運往甲、乙兩地,用大、小兩種貨車共18輛恰好能一次性運完這批物資.已知這兩種貨車的載重量分別為14噸/輛和8噸/輛,運往甲、乙兩地的運費如表:

運往地
車型

甲地(元/輛)

乙地(元/輛)

大貨車

720

800

小貨車

500

650


(1)求這兩種貨車各用多少輛?
(2)如果安排10輛貨車前往甲地,其余貨車前往乙地,其中前往甲地的大貨車為a輛,前往甲、乙兩地的總運費為w元,求出w與a的函數(shù)關系式;
(3)在(2)的條件下,若運往甲地的物資部少于96噸,請你設計出使總運費最低的貨車調配方案,并求出最少總運費.

查看答案和解析>>

同步練習冊答案