情景觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示,將將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ,∠CAC′= °;
問題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H,若AB=kAE、AC=kAF,探究HE與HF之間的數(shù)量關(guān)系,并說明理由.
解:觀察圖2即可發(fā)現(xiàn)△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,
∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;
故答案為:AD,90;
問題探究:FQ=EP,
理由如下:
∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,
∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,
又∵AF=AC,
在△AFQ與△CAG中,
,
∴△AFQ≌△CAG(AAS),
∴FQ=AG,
同理EP=AG,
∴FQ=EP;
拓展延伸:HE=HF,
理由:過點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q,
∵四邊形ABME是矩形,
∴∠BAE=90°,
∴∠BAG+∠EAP=90°,
又AG⊥BC,
∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,
∴△ABG∽△EAP,
∴AG:EP=AB:EA,
同理△ACG∽△FAQ,
∴AG:FQ=AC:FA,
∵AB=k•AE,AC=k•AF,
∴AB:EA=AC:FA=k,
∴AG:EP=AG:FQ,
∴EP=FQ,
又∵∠EHP=∠FHQ,∠EPH=∠FQH,
在Rt△EPH與Rt△FQH中,
,
∴Rt△EPH≌Rt△FQH(AAS),
∴HE=HF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.
(Ⅰ)如圖①,當(dāng)∠BOP=30°時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)如圖②,經(jīng)過點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)C′恰好落在邊OA上時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
開封市某初中為了更好地開展“陽光體育一小時(shí)”活動(dòng),圍繞著“你最喜歡的體育活動(dòng)項(xiàng)目是什么(只寫一項(xiàng))?”的問題,對全校學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,以下是根據(jù)得到的相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.
各年級人數(shù)統(tǒng)計(jì)表
年級 七年級 八年級 九年級
學(xué)生人數(shù) 850 680
請根據(jù)以上信息解答下列問題:
(1)該校對多少名學(xué)生進(jìn)行了抽樣調(diào)查?
(2)請將圖1和圖2補(bǔ)充完整;
(3)已知該校七年級學(xué)生比九年級學(xué)生少20人,請你補(bǔ)全上表,并利用樣本數(shù)據(jù)估計(jì)全校學(xué)生中最喜歡跳繩運(yùn)動(dòng)的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于點(diǎn)A,B,直線CD與x軸、y軸分別交于點(diǎn)C,D,AB與CD相交于點(diǎn)E,線段OA,OC的長是一元二次方程x2﹣18x+72=0的兩根(OA>OC),BE=5,tan∠ABO=.
(1)求點(diǎn)A,C的坐標(biāo);
(2)若反比例函數(shù)y=的圖象經(jīng)過點(diǎn)E,求k的值;
(3)若點(diǎn)P在坐標(biāo)軸上,在平面內(nèi)是否存在一點(diǎn)Q,使以點(diǎn)C,E,P,Q為頂點(diǎn)的四邊形是矩形?若存在,請寫出滿足條件的點(diǎn)Q的個(gè)數(shù),并直接寫出位于x軸下方的點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com