【題目】等腰被某一條直線分成兩個(gè)等腰三角形,并且其中一個(gè)等腰三角形與原三角形相似,則等腰的頂角的度數(shù)是____.
【答案】或或
【解析】
因?yàn)轭}中沒(méi)有指明是過(guò)頂角的頂點(diǎn)還是過(guò)底角的頂點(diǎn),且其中一個(gè)等腰三角形與原三角形相似與故應(yīng)該分三種情況進(jìn)行分析,從而求解.
解:①如圖1,∵AB=AC,當(dāng)BD=CD,CD=AD,
∴∠B=∠C=∠BAD=∠CAD,
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠B=45°,
∴∠BAC=90°.
此時(shí)易知∠BDA=∠BAC=90°,∠ABD=∠ABC= 45°,故∽;
②如圖2,∵AB=AC,AD=BD,AC=CD,
∴∠B=∠C=∠BAD,∠CAD=∠CDA,
∵∠CDA=∠B+∠BAD=2∠B,
∴∠BAC=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
此時(shí)易知∠BDA=∠BAC=108°,∠ABD=∠ABC= 36°, 故∽;
③如圖3,∵AB=AC,AD=BD=BC,
∴∠B=∠C,∠BAC=∠ABD,∠BDC=∠C,
∵∠BDC=∠A+∠ABD=2∠BAC,
∴∠ABC=∠C=2∠BAC,
∵∠BAC+∠ABC+∠C=180°,
∴5∠BAC=180°,
∴∠BAC=36°.
此時(shí)易知∠CBA=∠CDB=72°,∠BAC=∠DBC=36°,故有∽;
故答案為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AB為直徑作⊙O,與BC交于點(diǎn)D,點(diǎn)E是弧BD的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB=2∠BAE.
(1)求證:AC是⊙O的切線;
(2)若,BD=5,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“五四青年節(jié)”來(lái)臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽.并從參加比賽的學(xué)生中隨機(jī)抽取部分學(xué)生的演講成績(jī)進(jìn)行統(tǒng)計(jì)(等級(jí)記為:優(yōu)秀,:良好,:一般,:較差),并制作了如下統(tǒng)計(jì)圖表(部分信息未給出).
等級(jí) | 人數(shù) |
20 | |
10 |
請(qǐng)根據(jù)統(tǒng)計(jì)圖表中的信息解答下列問(wèn)題:
(1)這次共抽取了______名參加演講比賽的學(xué)生,統(tǒng)汁圖中________,_______;
(2)求扇形統(tǒng)計(jì)圖中演講成績(jī)等級(jí)為“一般”所對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)若該校學(xué)生共2000人,如果都參加了演講比賽,請(qǐng)你估計(jì)成績(jī)達(dá)到優(yōu)秀的學(xué)生有多少人?
(4)若演講比賽成績(jī)?yōu)?/span>等級(jí)的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從等級(jí)的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出“恰好抽中—名男生和一名女生”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子張或椅子把,現(xiàn)計(jì)劃用塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗,恰好配套),設(shè)用塊板材做椅子,用塊板材做桌子,則下列方程組正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA是⊙O的切線,A是切點(diǎn),AC是直徑,AB是弦,連接PB、PC,PC交AB于點(diǎn)E,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)若∠APC=3∠BPC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,I是內(nèi)心,AB=AC,O是AB邊上一點(diǎn),以點(diǎn)O為圓心,OB為半徑的⊙O經(jīng)過(guò)點(diǎn)I.
(1)求證:AI是⊙O的切線;
(2)如圖2,連接CI交AB于點(diǎn)E,交⊙O于點(diǎn)F,若tan∠IBC=,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),點(diǎn),與x軸交于另一點(diǎn)C,頂點(diǎn)為D,連接.
(1)求該拋物線的解析式;
(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t,
①當(dāng)點(diǎn)P在直線的下方運(yùn)動(dòng)時(shí),求面積的最大值;
②該拋物線上是否存在點(diǎn)P,使得?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的網(wǎng)格中,已知線段,現(xiàn)要在該網(wǎng)格內(nèi)再確定格點(diǎn)和格點(diǎn),某數(shù)學(xué)探究小組在探究時(shí)發(fā)現(xiàn)以下結(jié)論:以下結(jié)論不正確的是( )
A.將線段平移得到線段,使四邊形為正方形的有2種;
B.將線段平移得到線段,使四邊形為菱形的(正方形除外)有3種;
C.將線段平移得到線段,使四邊形為矩形的(正方形除外)有兩種;
D.不存在以為對(duì)角線的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿(mǎn)足市場(chǎng)需求,某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌
粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣(mài)出700盒,每盒售價(jià)每提高1元,每天要少賣(mài)出20盒.
(1)試求出每天的銷(xiāo)售量y(盒)與每盒售價(jià) (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn) (元)最大?最大利潤(rùn)是多少?(6分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com