【題目】如圖,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求證:AF平分∠BAC.

【答案】證明見解析.

【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證ABF≌△ACF,從而證出AF平分∠BAC

試題解析:證明:∵AB=AC(已知),

∴∠ABC=ACB(等邊對等角).

BDCE分別是高,

BDAC,CEAB(高的定義).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代換).

FB=FC(等角對等邊)

ABFACF中,

ABFACF(SSS),

∴∠BAF=CAF(全等三角形對應(yīng)角相等)

AF平分∠BAC.

型】解答
結(jié)束】
23

【題目】如圖,在△ABC中,AC=BC,∠C=90°AD△ABC的角平分線,DE⊥AB,垂足為E

1)求證:CD=BE;

2)已知CD=2,求AC的長;

3)求證:AB=AC+CD

【答案】(1)詳見解析;(2)2+2;(3)詳見解析.

【解析】試題分析:1)先根據(jù)題意判斷出ABC是等腰直角三角形,故∠B=45°,再由DEAB可知BDE是等腰直角三角形,故DE=BE,再根據(jù)角平分線的性質(zhì)即可得出結(jié)論;

2)由(1)知,BDE是等腰直角三角形,DE=BE=CD,再根據(jù)勾股定理求出BD的長,進(jìn)而可得出結(jié)論;

3)先根據(jù)HL定理得出RtACDRtAED,故AE=AC,再由CD=BE可得出結(jié)論.

試題解析:(1∵在ABC中,AC=BC,C=90°,

ABC是等腰直角三角形,

∴∠B=45°,

DEAB

BDE是等腰直角三角形,

DE=BE

ADABC的角平分線,

CD=DE,

CD=BE;

2∵由(1)知,BDE是等腰直角三角形,DE=BE=CD

DE=BE=CD=2,

BD=

AC=BC=CD+BD=2+2;

3ADABC的角平分線,DEAB,

CD=DE

RtACDRtAED中,

,

RtACDRtAED,

AE=AC

∵由(1)知CD=BE,

AB=AE+BE=AC+CD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某校女子田徑隊23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學(xué)的年齡登記錯誤,將14歲寫成15歲,經(jīng)重新計算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結(jié)論中正確的是( )
A.a<13,b=13
B.a<13,b<13
C.a>13,b<13
D.a>13,b=13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABBC,BEAC于點EADBC于點D,∠BAD=45°,ADBE交于點F

1)求證:△ADC≌△BDF;

2)求證:BF2AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱底面半徑為cm,高為9cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側(cè)面繞3圈到B點,則這根棉線的長度最短為(

A. 12cm B. cm C. 15cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動課上,某學(xué)習(xí)小組對有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(xiàn)(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;

(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;

(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數(shù)t,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,將△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△DEC.若點F是DE的中點,連接AF,則AF=( )

A.4
B.5
C.4
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全問題已成為社會各界關(guān)注的熱點問題,區(qū)教育局要求各學(xué)校加強對學(xué)生的安全教育,教育局安全科為了調(diào)查學(xué)生對“安全知識”內(nèi)容的了解程度程度分為:“A:十分熟悉”、“B:了解較多”、“C:了解較少、D:不了解”,對某所中學(xué)的學(xué)生進(jìn)行了抽樣調(diào)查我們將這次調(diào)查的結(jié)果繪制了以下兩幅不完整統(tǒng)計圖,如圖1,圖2,請你根據(jù)圖中提供的信息解答下列問題:

根據(jù)以上信息,解答下列問題

補全條形統(tǒng)計圖;

本次抽樣調(diào)查了______名學(xué)生;在圖1中扇形統(tǒng)計圖中,求出“D”的部分所對應(yīng)的圓心角等于______

若該中學(xué)共有2000名學(xué)生,請你估計這所中學(xué)的所有學(xué)生中,對“安全知識”內(nèi)容的了解程度為“A:十分熟悉”和“B:了解較多”的學(xué)生共有______名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBCDEGBCG,∠E=∠1,可得AD平分∠BAC

理由如下:∵ADBCD,EGBCG,(_______

∴∠ADC=∠EGC90°,(垂直的定義),

ADEG,(_______

∴∠1=∠2,(_______

E=∠3,(_______

又∵∠E=∠1(已知),

_____________,______

AD平分∠BAC.(_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點MN,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

同步練習(xí)冊答案