已知,如圖,以Rt△ABC的斜邊AB為直徑作⊙0,D是BC上的點,且有弧AC=弧CD,連CD、BD,在BD延長線上取一點E,使∠DCE=∠CBD.
(1)求證:CE是⊙0的切線;
(2)若CD=2
5
,DE和CE的長度的比為
1
2
,求⊙O半徑.
(1)證明:連接OC,AD,
AC
=
CD
,
∴OC⊥AD,∠ADC=∠DBC,
而∠DCE=∠CBD,則∠DCE=∠ADC,
∴CEAD,
∴OC⊥CE,
∴CE是⊙O的切線;

(2)設(shè)AD交OC于點F,
∵AB為直徑,
∴∠ADB=90°,
由CEAD,
∴∠E=90°,
AC
=
CD

∴OC⊥AD,AF=DF,
在Rt△CED中,設(shè)DE=x,則CE=2x,而CD=2
5
,
根據(jù)勾股定理得:x2+(2x)2=(2
5
)2

解得:x=2,
∴DE=2,CE=4,
∵∠E=∠OCD=∠ADE=90°,
∴四邊形CEDF是矩形,
∴AF=DF=CE=4,CF=DE=2,
在Rt△OAF中,設(shè)OA=r,根據(jù)勾股定理得r2=42+(x-2)2
∴r=5.
答:所求的半徑為5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,已知AB是⊙O的直徑,直線l與⊙O相切于點B,直線m垂直AB于點C,交⊙O于P、Q兩點.連接AP,過O作ODAP交l于點D,連接AD與m交于點M.
(1)如圖乙,當(dāng)直線m過點O時,求證:M是PO的中點;
(2)如圖甲,當(dāng)直線m不過點O時,M是否仍為PC的中點?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,已知AB=5,BC=8,AC=7,動點P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線段PQ的最小值等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)證明:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的弦,CO⊥OA,OC交AB于點P,且PC=BC,BC是⊙O的切線嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有人請?zhí)┛说靥汗緸槟承陆C(jī)場的環(huán)形通道鋪設(shè)地毯.當(dāng)泰克先生拿到計劃藍(lán)圖(如圖)時,他有些生氣:與內(nèi)圓相切的一條弦的長度是唯一給出的尺寸數(shù)據(jù).“這就難了,”泰克想,“兩圓之間環(huán)形陰影的面積不知道,怎么能估計出大致需要多少地毯呢?最好去找找設(shè)計師薩普先生.”薩普先生是個優(yōu)秀的幾何學(xué)家,他對此倒是處之泰然:“對我來說,有這一個數(shù)據(jù)就夠了,把這個數(shù)據(jù)代入公式就能求出圓環(huán)的面積.”泰克先生吃了一驚,略一思索,便現(xiàn)出了笑容:“謝謝你,薩普先生,無須勞駕你動用什么公式了,我可以馬上得出答案.”你知道泰克先生是怎么算的嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑AB=18,AC和BD是它的兩條切線,CD與⊙O相切于E,且與AC、BD相交于點C、D,設(shè)
AC=x,BD=y,試求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知A、B兩點的坐標(biāo)分別為(2,0)、(0,2),⊙C的圓心坐標(biāo)為(-1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值是( 。
A.2B.1C.2-
2
2
D.2-
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知PA、PB切⊙O于A、B兩點.連接AB且PA、PB的長分別是方程x2-2mx+3=0的兩根,AB=m,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案