【題目】(問題背景)

1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+B=∠C+D

(簡單應(yīng)用)

2)如圖2AP、CP分別平分∠BAD、∠BCD,若∠ABC28°,∠ADC20°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)

(問題探究)

3)如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A30°,∠C18°,則∠P的度數(shù)為   

(拓展延伸)

4)在圖4中,若設(shè)∠Cx,∠By,∠CAPCAB,∠CDPCDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為   (用x、y表示∠P

5)在圖5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P與∠A、∠C的關(guān)系,直接寫出結(jié)論   

【答案】1)證明見解析;(224°;(324°;(4)∠P=x+y;(5)∠P=

【解析】

1)根據(jù)三角形內(nèi)角和為180°,對頂角相等,即可證得∠A+B=C+D

2)由(1)的結(jié)論得:∠BCP+P=BAP+ABC①,∠PAD+P=PCD+ADC②,將兩個(gè)式子相加,已知APCP分別平分∠BAD、∠BCD,可得∠BAP=PAD,∠BCP=PCD,可證得∠P=(ABC+ADC),即可求出∠P度數(shù).

3)已知直線BP平分∠ABC的外角∠FBCDP平分∠ADC的外角∠ADE,可得∠1=2,∠3=4,由(1)的結(jié)論得:∠C+180°-3=P+180°-1,∠A+4=P+2,兩式相加即可求出∠P的度數(shù).

4)由(1)的結(jié)論得:CAB+C=P+CDB,CAB+P=B+CDB,第一個(gè)式子乘以3,得到的式子減去第二個(gè)式子即可得出用xy表示∠P

5)延長ABDP于點(diǎn)F,標(biāo)注出∠1,∠2,∠3,∠4,由(1)的結(jié)論得:∠A+21=C+180°-23,其中根據(jù)對頂角相等,三角形內(nèi)角和,以及外角的性質(zhì)即可得到∠1=PBF=180°-BFP-P=180°-(A+3)-P,代入∠A+21=C+180°-23,即可得出∠P與∠A、∠C的關(guān)系.

1)如圖1,

A+B+AOB=C+D+COD=180°

∵∠AOB=COD

∴∠A+B=C+D

2)∵APCP分別平分∠BAD、∠BCD

∴∠BAP=PAD,∠BCP=PCD,

由(1)的結(jié)論得:∠BCP+P=BAP+ABC①,∠PAD+P=PCD+ADC

+②,得2P+PAD+BCP=BAP+ABC +PCD+ADC

∴∠P=(ABC+ADC)

∴∠ABC28°,∠ADC20°

∴∠P=(28°+20°)

∴∠P=24°

故答案為:24°

3)∵如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,

∴∠1=2,∠3=4

由(1)的結(jié)論得:∠C+180°-3=P+180°-1①,∠A+4=P+2

+②,得∠C+180°-3+A+4=P+180°-1+P+2

30°+18°=2P

∴∠P=24°

故答案為:24°

4)由(1)的結(jié)論得:CAB+C=P+CDB①,CAB+P=B+CDB

①×3,得CAB+3C=3P+CDB

-③,得∠P-3x=y-3P

∴∠P=x+y

故答案為:∠P=x+y

5)如圖5所示,延長ABDP于點(diǎn)F

由(1)的結(jié)論得:∠A+21=C+180°-23

∵∠1=PBF=180°-BFP-P=180°-(A+3)-P

∴∠A+360°-2A-23-2P=C+180°-23

解得:∠P=

故答案為:∠P=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形紙片ABCD的邊長為2,∠ABC=60°,翻折∠B,∠D,使點(diǎn)B,D兩點(diǎn)重合于對角線BD上一點(diǎn)P,EF,GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是菱形ABCD的中心;
②當(dāng)x= 時(shí),EF+GH>AC;
③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是
④當(dāng)0<x<2時(shí),六邊形AEFCHG周長的值不變.
其中正確結(jié)論是 . (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設(shè)店主李三公將客房進(jìn)行改造后,房間數(shù)大大增加.每間客房收費(fèi)20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費(fèi)按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:

1

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正三角形AEF的頂點(diǎn)A重合,將△AEF繞其頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)BE=DF時(shí),∠BAE的大小可以是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字1,2,3,4四個(gè)小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實(shí)驗(yàn)先攪拌均勻.
(1)若從中任取一球,球上的數(shù)字為偶數(shù)的概率為多少?
(2)若從中任取一球(不放回),再從中任取一球,請用畫樹狀圖或列表格的方法求出兩個(gè)球上的數(shù)字之和為偶數(shù)的概率.
(3)若設(shè)計(jì)一種游戲方案:從中任取兩球,兩個(gè)球上的數(shù)字之差的絕對值為1為甲勝,否則為乙勝,請問這種游戲方案設(shè)計(jì)對甲、乙雙方公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A城氣象臺測得臺風(fēng)中心在A城正西方向600kmB處,以每小時(shí)200km的速度向北偏東60°的方向移動(dòng),距臺風(fēng)中心500km的范圍內(nèi)是受臺風(fēng)影響的區(qū)域.

1A城是否受到這次臺風(fēng)的影響?為什么?

2)若A城受到這次臺風(fēng)的影響,那么A城遭受這次臺風(fēng)影響有多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn)。小華按下列要求作圖:①在正方形網(wǎng)格的三條不同的實(shí)線上各取一個(gè)格點(diǎn),使其中任意兩點(diǎn)不在同一條實(shí)線上;②連結(jié)三個(gè)格點(diǎn),使之構(gòu)成直角三角形。小華在左邊的正方形網(wǎng)格中作出了RtABC。請你按照同樣的要求,在右邊的兩個(gè)正方形網(wǎng)格中各畫出一個(gè)直角三角形,并使三個(gè)網(wǎng)格中的直角三角形互不全等。

查看答案和解析>>

同步練習(xí)冊答案