如圖5所示,P為⊙O外一點(diǎn),PA、PB、AB都與⊙O相切,∠P=40°,則∠AOB的度數(shù)為_(kāi)________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過(guò)點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過(guò)的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長(zhǎng)及直角梯形OABC的面積,
②當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(shí)(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:等腰Rt△ABC中,∠A=90°,
(1)如圖1,E為AB上任意一點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,則有AD∥BC;
(2)若將等腰Rt△ABC改為正△ABC,如圖2所示,E為AB邊上任一點(diǎn),△CDE為正三角形,連接AD,上述結(jié)論還成立嗎?答
 

(3)若△ABC為任意等腰三角形,AB=AC,如圖3,E為AB上任一點(diǎn),△DEC∽△ABC,連接AD,請(qǐng)問(wèn)AD與BC的位置關(guān)系怎樣?精英家教網(wǎng)答:
 

請(qǐng)你在上述3個(gè)結(jié)論中,任選一個(gè)結(jié)論進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在正方形ABCD中,AB=4cm,點(diǎn)E,F(xiàn),G,H分別是正方形的四條邊上的點(diǎn),且AE=BF=CG=DH.如圖1所示.若把圖1中的四個(gè)直角三角形剪下來(lái),拼成如圖2所示的面積為10cm2的正方形A1B1C1D1,則中間四邊形E1F1G1H1的面積等于
 
cm2
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1是三個(gè)邊長(zhǎng)為2的正方形小方格,反比例函數(shù)y=
kx
經(jīng)過(guò)正方形格點(diǎn)D,與小方格交于點(diǎn)E、點(diǎn)F,直線EF的解析式為y=mx+a.如圖2所示的△ABC為Rt△,∠B=90°,AB=10厘米,BC=a厘米.
(1)求反比例函數(shù)的解析式.
(2)求一次函數(shù)的解析式.
(3)已知點(diǎn)P從點(diǎn)A出發(fā)沿AB邊向點(diǎn)B以1厘米/秒的速度移動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以2厘米/秒的速度移動(dòng),如果P、Q兩點(diǎn)同時(shí)出發(fā),幾秒種后,△BPQ的面積與是△ABC的面積一半?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•宜昌一模)如圖1,頂點(diǎn)為B(r,t+6),的拋物線y=ax2+bx+c過(guò)點(diǎn)A(0,6),t≠0,連接AB,P是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(垂足為D),交拋物線y=ax2+bx+c于點(diǎn)C,設(shè)點(diǎn)P的橫坐標(biāo)為m,AC、AB、BC圍成的圖形面積為S,點(diǎn)P,C之間的距離為d,s是m的二次函數(shù),圖象如圖2所示,Q為頂點(diǎn),O,E為其與m軸的兩個(gè)交點(diǎn).
(1)求s與m的函數(shù)關(guān)系;
(2)求r的值;
(3)求d與m函數(shù)關(guān)系式;
(4)求拋物線y=ax2+bx+c的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案