【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下: ∵∠1=∠2(已知),
且∠1=∠CGD()
∴∠2=∠CGD(等量代換)
∴CE∥BF()
∴∠=∠BFD()
又∵∠B=∠C(已 知)
∴(等量代換)
∴AB∥CD()
【答案】(對頂角相等);(同位角相等,兩直線平行);C;(兩直線平行,同位角相等);∠BFD=∠B;(內(nèi)錯角相等,兩直線平行)
【解析】解:∵∠1=∠2(已知), 且∠1=∠CGD(對頂角相等),
∴∠2=∠CGD(等量代換),
∴CE∥BF(同位角相等,兩直線平行),
∴∠C=∠BFD(兩直線平行,同位角相等),
又∵∠B=∠C(已知),
∴∠BFD=∠B(等量代換),
∴AB∥CD(內(nèi)錯角相等,兩直線平行).
所以答案是:(對頂角相等),(同位角相等,兩直線平行),C,(兩直線平行,同位角相等),(內(nèi)錯角相等,兩直線平行)
【考點精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質(zhì).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊BD延長線上一點,連結AC、CE,使AB=AC.
(1)求證:△BAD≌△ACE;
(2)若∠B=30°,AB=26,BD=10,求平行四邊形ABDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列單項式按以下規(guī)律排列:a,3a2 , 5a3 , 7a,9a2 , 11a3 , 13a,…,則第2016個單項式應是( )
A.4031a3
B.4031a
C.4031a2
D.4032a3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)
如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)的圖象與BC邊交于點E.
⑴當F為AB的中點時,求該函數(shù)的解析式;
⑵當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要使多項式(x2+px+2)(x﹣q)不含關于x的二次項,則p與q的關系是( )
A. 相等 B. 互為相反數(shù) C. 互為倒數(shù) D. 乘積為﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的函數(shù)y=(3-a)x2-x是二次函數(shù),則a的取值范圍( )
A. a≠0B. a≠3C. a<3D. a>3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com