【題目】如圖,方格紙中每個小正方形的邊長均為1.線段AB的兩個端點在小正方形的頂點上。

(1)在圖中畫一個以AB為腰的等腰三角形△ABCC在小正方形的頂點上,tanB=3;

(2)在圖中畫一個以AB為底的等腰三角形△ABDD在小正方形的項點上,且△ABD是銳角三角形。連接CD,請直接寫出線段CD的長。

【答案】1)詳見解析;(2)圖詳見解析,.

【解析】

(1)因為AB為腰、tanB=3的等腰ABC,由此即可畫出圖形

(2)因為AB為底、ABD是銳角三角形的等腰ABC,所以點C在線段AB的垂直平分線上,由此即可畫出圖形,利用勾股定理計算CD的長

(1)如圖所示:ABC即為所求

(2)如圖所示:ABD即為所求

CD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】每年5月的第二個星期日即為母親節(jié),父母恩深重,恩憐無歇時,許多市民喜歡在母親節(jié)為母親送鮮花,感恩母親,祝福母親. 節(jié)日前夕,某花店采購了一批鮮花禮盒,成本價為30元每件,分析上一年母親節(jié)的鮮花禮盒銷售情況,得到了如下數(shù)據(jù),同時發(fā)現(xiàn)每天的銷售量(件)是銷售單價(元/件)的一次函數(shù).

銷售單價 (/)

30

40

50

60

每天銷售量 ()

350

300

250

200

(1)求出的函數(shù)關系;

(2)物價局要求,銷售該鮮花禮盒獲得的利潤不得高于100﹪:

當銷售單價取何值時,該花店銷售鮮花禮盒每天獲得的利潤為5000?(利潤=銷售總價-成本價);

試確定銷售單價取何值時,花店銷該鮮花禮盒每天獲得的利潤(元)最大?并求出花店銷該鮮花禮盒每天獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點,拋物線的對稱軸與軸交于點,頂點坐標為.

1)求拋物線的表達式和頂點的坐標;

2)如圖1,點為拋物線上一點,點不與點重合,當時,過點軸,交拋物線的對稱軸于點,作軸于點H,得到矩形,求矩形的周長的最大值;

3)如圖2,點為拋物線對稱軸上一點,是否存在點,使以點、為頂點的三角形是直角三角形?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點和點為圓心,為圓心,大于號的長為半徑面狐,兩弧交于點:②做直線,且恰好經(jīng)過點,與交于點,連接,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,②分別是某款籃球架的實物圖和示意圖,已知支架AB的長為2.3m,支架AB與地面的夾角∠BAC70°,BE的長為1.5m,籃板部支架BD與水平支架BE的夾角為46°,BCDE垂直于地面,求籃板頂端D到地面的距離.(結果保留一位小數(shù),參考數(shù)據(jù):sin70°≈0.94cos70°≈0.34,tan70°≈2.75,sin46°≈0.72cos46°≈0.69,tan46°≈1.04)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于的一元二次方程,給出下列說法:①若,則方程必有兩個實數(shù)根;②若,則方程必有兩個實數(shù)根;③若,則方程有兩個不相等的實數(shù)根;④若,則方程一定沒有實數(shù)根.其中說法正確的序號是( )

A. ①②③B. ①②④

C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把有兩邊對應相等,且夾角互補(不相等)的兩個三角形叫做互補三角形,如圖1,□ABCD中,AOBBOC互補三角形”.

(1)寫出圖1中另外一組互補三角形”_______

(2)在圖2中,用尺規(guī)作出一個EFH,使得EFHEFG互補三角形,且EFHEFGEF同側,并證明這一組互補三角形的面積相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人從學校出發(fā)去新華書店看書,甲步行一段時間后,乙騎自行車沿相同路線行進兩人均勻速前行,他們之間的距離s()與甲出發(fā)時間t()之間的函數(shù)關系如圖所示.下列說法錯誤的是( )

A. 乙的速度是甲速度的2.5

B. a15

C. 學校到新華書店共3800

D. 甲第25分鐘到達新華書店

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C、D為半圓上三等分點,則下列說法:①==;②∠AOD=∠DOC=∠BOC;③ADCDOC;④AOD沿OD翻折與COD重合.正確的有(

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案