【題目】從﹣2,﹣1,0,1,2,3,4這7個(gè)數(shù)中任選一個(gè)數(shù)作為a的值,則使得關(guān)于x的分式方程有整數(shù)解,且關(guān)于x的一次函數(shù)y=(a+1)x+a﹣4的圖象不經(jīng)過第二象限的概率是 .
【答案】
【解析】
試題分析:首先使得關(guān)于x的分式方程有整數(shù)解,可得3﹣ax+3(x﹣3)=﹣x,解得x=,由x≠3,可得x≠1,所以當(dāng)a=﹣2,2,3時(shí),分式方程有整數(shù)解;且關(guān)于x的一次函數(shù)y=(a+1)x+a﹣4的圖象不經(jīng)過第二象限的數(shù),可得a+1>0,a﹣4≤0,即﹣1<a≤4,當(dāng)a=0,1,2,3,4時(shí),關(guān)于x的一次函數(shù)y=(a+1)x+a﹣4的圖象不經(jīng)過第二象限;
綜上,當(dāng)a=2,3時(shí),使得關(guān)于x的分式方程有整數(shù)解,且關(guān)于x的一次函數(shù)y=(a+1)x+a﹣4的圖象不經(jīng)過第二象限;
∴使得關(guān)于x的分式方程有整數(shù)解,且關(guān)于x的一次函數(shù)y=(a+1)x+a﹣4的圖象不經(jīng)過第二象限的概率是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)校秋季運(yùn)動(dòng)會(huì)中,小明的跳遠(yuǎn)比賽跳出了4.25米,若小明的跳遠(yuǎn)成績(jī)記做+0.25米,那么小東跳出了3.85米,記作 _________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形的一個(gè)內(nèi)角等于另外兩個(gè)內(nèi)角的和,這個(gè)三角形是( 。
A. 直角三角形 B. 銳角三角形 C. 鈍角三角形 D. 何類三角形不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買2個(gè)足球和5個(gè)籃球共需500元.
(1)購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?
(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購(gòu)買足球和籃球共96個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com