精英家教網 > 初中數學 > 題目詳情

【題目】為了提高學生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆漢字聽寫大賽,經選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:

組別

成績x分

頻數人數

第1組

25x<30

6

第2組

30x<35

8

第3組

35x<40

16

第4組

40x<45

a

第5組

45x<50

10

請結合圖表完成下列各題:

1求表中a的值;2請把頻數分布直方圖補充完整;

3第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小宇與小強兩名男同學能分在同一組的概率.

【答案】1、10;2、答案見解析;3、.

【解析】

試題分析:1、根據利用總數減去其余四組的人數得出a的值;2、根據統(tǒng)計表將條形統(tǒng)計圖補充完整;3、首先畫出樹狀圖,然后得出概率.

試題解析:1表中a的值是:a=50681610=10;

2、根據題意畫圖如下:

3、用A表示小宇B表示小強,C、D表示其他兩名同學,

根據題意畫樹狀圖如下:

從上圖可知共有12種等可能情況,小宇與小強兩名男同學分在同一組的情況有4種,則小宇與小強兩名男同學分在同一組的概率是

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   ;

2)如圖,將直角三角板DOE繞點O順時針方向轉動到某個位置,若OC恰好平分∠AOE,求∠COD的度數;

3)如圖,將直角三角板DOE繞點O任意轉動,如果OD始終在∠AOC的內部,試猜想∠AOD和∠COE有怎樣的數量關系?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,一拱橋的截面呈拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,拱橋與水面的最大距離是5m,橋洞兩側壁上各有一盞距離水面4m景觀燈.

1)求拋物線的解析式;

2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點BC兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設CP=t(0<t<10).

(1)請直接寫出B、C兩點的坐標及拋物線的解析式;

(2)過點PPEBC,交拋物線于點E,連接BE,當t為何值時,∠PBE=OCD

(3)點Qx軸上的動點,過點PPMBQ,交CQ于點M,作PNCQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD沿AE折疊,點D的對應點落在BC上點F處,過點FFGCD,連接EFDG,下列結論中正確的有( 。

①∠ADG=AFG;②四邊形DEFG是菱形;③DG2=AEEG;④若AB=4,AD=5,則CE=1

A. ①②③④ B. ①②③ C. ①③④ D. ①②

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,ABC中,ACB=90°,AC=BC,點E是BC上一點,連接AE.

(1)如圖1,當∠BAE=15°,CE=時,求AB的長.

(2)如圖2,延長BC至D,使DC=BC,將線段AE繞點A順時針旋轉90°得線段AF,連接DF,過點B作BGBC,交FC的延長線于點G,求證:BG=BE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據閱讀材料,解決問題.

數n是一個三位數,各數位上的數字互不相同,且都不為零,從它各數位上的數字中任選兩個構成一個兩位數,這樣就可以得到六個不同的兩位數,我們把這六個不同的兩位數叫做數n的“生成數”.數n的所有“生成數”之和與22的商記為G(n),例如n=123,它的六個“生成數”是12,13,21,23,31,32,這六個“生成數”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.

(1)計算:G(125),G(746);

(2)數s,t是兩個三位數,它們都有“生成數”,a,1,4分別是s的百位、十位、個位上的數字,x,y,6分別是t的百位、十位、個位上的數字,規(guī)定:k=,若G(s)G(t)=84,求k的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一條筆直的高速公路上依次有3個標志點A、B、C,甲、乙兩車分別從A、C兩點同時出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時間x(小時)之間的函數關系圖象如圖所示.觀察圖象,給出下列結論:①A、C之間的路程為690千米;②乙車比甲車每小時快30千米;③4.5小時兩車相遇;④點E的橫坐標表示兩車第二次相遇的時間;⑤點E的坐標為(7,180)其中正確的有________(把所有正確結論的序號都填在橫線上).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料,完成任務:

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務:

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

同步練習冊答案