【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸,交于A、B兩點,點C是BO的中點且
(1)求直線AC的解析式;
(2)若點M是直線AC的一點,當(dāng)時,求點M的坐標(biāo).
【答案】(1)(2)
【解析】
(1)令x=0得y=4,故B(0,4),由得|AO|=2,所以A(-2,0),再由C是BO的中點,得C(0,2),設(shè)AC的解析式為y=kx+b,把點A、點C的坐標(biāo)代入即可;
(2)分兩種情況分別討論即可求得.
(1)令x=0得y=4,故B(0,4),
∴BO=4
∵
∴,即AO=2,
∴A(-2,0),
∵C是BO的中點,
∴C(0,2),
設(shè)AC的解析式為y=kx+b,則
解得:
∴直線AC的解析式為:;
(2)∵B(0,4),點C為BO中點.
∴BC=2,S△ABC=S△AOC,
∵S△ABM=2S△AOC,
當(dāng)M在第一象限時,
∴S△BCM=S△AOC,
∴BCxM=×2×2,
∴xM=2,
代入y=x+2得y=4,
∴M(2,4),
當(dāng)M在第三象限時,
S△BCM=3S△AOC,
即BC|xM|=3××2×2,
∴|xM|=6,
∴xM=-6,
代入y=x+2得y=-4,
∴M(-6,-4),
綜上,M點的坐標(biāo)為(2,4)或(-6,-4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC>AB>AC,D是邊BC上的一個動點(點D不與點B、C重合),將△ABC沿AD折疊,點B落在點B'處,連接BB',B'C,若△BCB'是等腰三角形,則符合條件的點D的個數(shù)是
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC的AC,BC邊上各取一點P,Q,使AP=CQ,AQ,BP相交于點O.若BO=6,PO=2,則AP的長,AO的長分別為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將每件進(jìn)價為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設(shè)該商品每件降價x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是A邊上一點,且AE=,點F是邊BC上的任意一點,把△BEF沿EF翻折,點B的對應(yīng)點為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(2,1),B(1,4),C(3,2).請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)以原點O為位似中心,位似比為1:2,在y軸的右側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點的坐標(biāo);
(3)如果點D(a,b)在線段BC上,請直接寫出經(jīng)過(2)的變化后對應(yīng)點D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了2017年1月至2019年12月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計圖如下:
根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
B.2019年的月接待旅游量的平均值超過300萬人次
C.2017年至2019年,年接待旅游量逐年增加
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的一條弦,點在上,聯(lián)結(jié)并延長,交弦于點,且.
(1)如圖1,如果平分,求證:;
(2)如圖2,如果,求的值;
(3)延長線段交弦于點,如果是等腰三角形,且的半徑長等于,求弦的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com