【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸,y軸,交于AB兩點,點CBO的中點且

(1)求直線AC的解析式;

(2)若點M是直線AC的一點,當(dāng)時,求點M的坐標(biāo).

【答案】(1)(2)

【解析】

(1)x=0y=4,故B(0,4),由|AO|=2,所以A(-2,0),再由CBO的中點,得C(0,2),設(shè)AC的解析式為y=kx+b,把點A、點C的坐標(biāo)代入即可;

(2)分兩種情況分別討論即可求得.

(1)x=0y=4,故B(0,4),

BO=4

,即AO=2,

A(-2,0),

CBO的中點,

C(0,2),

設(shè)AC的解析式為y=kx+b,則

解得:

∴直線AC的解析式為:;

(2)B(0,4),點CBO中點.
BC=2,SABC=SAOC,
SABM=2SAOC,
當(dāng)M在第一象限時,
SBCM=SAOC
BCxM=×2×2,
xM=2,
代入y=x+2y=4,
M(2,4),
當(dāng)M在第三象限時,
SBCM=3SAOC,
BC|xM|=3××2×2,
|xM|=6,
xM=-6,
代入y=x+2y=-4,
M(-6,-4),
綜上,M點的坐標(biāo)為(2,4)或(-6,-4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BCABAC,D是邊BC上的一個動點(點D不與點BC重合),將ABC沿AD折疊,點B落在點B'處,連接BB',B'C,若BCB'是等腰三角形,則符合條件的點D的個數(shù)是

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABCAC,BC邊上各取一點P,Q,使AP=CQ,AQ,BP相交于點O.若BO=6,PO=2,則AP的長,AO的長分別為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將每件進(jìn)價為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設(shè)該商品每件降價x元,商場一天可通過A商品獲利潤y元.

(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)

(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3BC4,點EA邊上一點,且AE,點F是邊BC上的任意一點,把BEF沿EF翻折,點B的對應(yīng)點為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.

(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;

(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A2,1),B1,4),C32).請解答下列問題:

1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,并直接寫出C1點的坐標(biāo);

2)以原點O為位似中心,位似比為12,在y軸的右側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點的坐標(biāo);

3)如果點Da,b)在線段BC上,請直接寫出經(jīng)過(2)的變化后對應(yīng)點D2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了20171月至201912月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計圖如下:

根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是(

A.2017年至2019年,各年的月接待旅游量高峰期大致在78月份

B.2019年的月接待旅游量的平均值超過300萬人次

C.2017年至2019年,年接待旅游量逐年增加

D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的一條弦,點上,聯(lián)結(jié)并延長,交弦于點,且

1)如圖1,如果平分,求證:;

2)如圖2,如果,求的值;

3)延長線段交弦于點,如果是等腰三角形,且的半徑長等于,求弦的長.

查看答案和解析>>

同步練習(xí)冊答案