【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了2017年1月至2019年12月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計圖如下:
根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
B.2019年的月接待旅游量的平均值超過300萬人次
C.2017年至2019年,年接待旅游量逐年增加
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)
【答案】D
【解析】
根據(jù)折線統(tǒng)計圖的反映數(shù)據(jù)的增減變化情況,這個進行判斷即可.
解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故選項不符合題意;
B、從2019年3月起,每個月的人數(shù)均超過300萬人,并且整體超出的還很多,故選項不符合題意;
C、從折線統(tǒng)計圖的整體變化情況可得2017年至2019年,年接待旅游量逐年增加,故選項不符合題意;
D、從統(tǒng)計圖中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性要大,故選項符合題意;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為(4,0),點B為y軸上的一動點,將線段AB繞點B順時針旋轉(zhuǎn)90°得線段BC,若點C恰好落在反比例函數(shù)y=的圖象上,則點B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經(jīng)過測試同時開放2個大餐廳和1個小餐廳,可供3000名學(xué)生就餐;同時開放1個大餐廳,1個小餐廳,可供1700名學(xué)生就餐.
(1)請問1個大餐廳、1個小餐廳分別可供多少名學(xué)生就餐.
(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全校4500名學(xué)生就餐?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在藝術(shù)節(jié)宣傳活動中,采用了四種宣傳形式:A唱歌、B舞蹈、C朗誦、D器樂.全校的每名學(xué)生都選擇了一種宣傳形式參與了活動,小明對同學(xué)們選用的宣傳形式,進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖兩種不完整的統(tǒng)計圖表:
請結(jié)合統(tǒng)計圖表,回答下列問題:
(1)本次調(diào)查的學(xué)生共____人,a=______, 并將條形統(tǒng)計圖補充完整;
(2)如果該校學(xué)生有2000人,請你估計該校喜歡“唱歌”這種宣傳形式的學(xué)生約有多少人?
(3)學(xué)校采用調(diào)查方式讓每班在A、B、C、D四種宣傳形式中,隨機抽取兩種進行展示,請用樹狀圖或列表法,求某班抽到的兩種形式有一種是“唱歌”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是直線與反比例函數(shù)(為常數(shù))的圖象的交點.過點作軸的垂線,垂足為,且.
(1)求點的坐標(biāo)及的值;
(2)已知點,過點作平行于軸的直線,交直線于點,交反比例函數(shù)(為常數(shù))的圖象于點,交垂線于點.若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列對于隨機事件的概率的描述:
①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;
②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;
③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85
其中合理的有______(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=-x2+2bx+c與直線l:y=9x+14交于點A,其中點A的橫坐標(biāo)為-2.
(1)請用含有b的代數(shù)式表示c: ;
(2)若點B在直線l上,且B的橫坐標(biāo)為-1,點C的坐標(biāo)為(b,5).
①若拋物線M還過點B,直接寫出該拋物線的解析式;
②若拋物線M與線段BC恰有一個交點,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+b的圖象與x軸的交點為A(2,0),與y軸的交點為B,直線AB與反比例函數(shù)y=的圖象交于點C(﹣1,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)直接寫出關(guān)于x的不等式2x+b>的解集;
(3)點P是這個反比例函數(shù)圖象上的點,過點P作PM⊥x軸,垂足為點M,連接OP,BM,當(dāng)S△ABM=2S△OMP時,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com