【題目】是正方體的平面展開圖,六個(gè)面的點(diǎn)數(shù)分別為1點(diǎn)、2點(diǎn)、3點(diǎn)、4點(diǎn)、5點(diǎn)、6點(diǎn),將點(diǎn)數(shù)朝外折疊成一枚正方體骰子,并放置于水平桌面上,如圖所示,若骰子初始位置為圖所示的狀態(tài),將骰子向右翻滾,則完成1次翻轉(zhuǎn),此時(shí)骰子朝下一面的點(diǎn)數(shù)是2,那么按上述規(guī)則連線完成2次翻折后,骰子朝下一面的點(diǎn)數(shù)是3點(diǎn);連續(xù)完成2019次翻折后,骰子朝下一面的點(diǎn)數(shù)是(

A.2B.3C.4D.5

【答案】D

【解析】

根據(jù)正方體的表面展開圖,可得各個(gè)面上的數(shù)字,由2019次翻轉(zhuǎn)為第505組的第三次翻轉(zhuǎn),即可得到答案.

正方體的表面展開圖,相對(duì)面之間一定相隔一個(gè)正方形,

2點(diǎn)”與“5點(diǎn)”是相對(duì)面,“3點(diǎn)”與“4點(diǎn)”是相對(duì)面,“1點(diǎn)”與“6點(diǎn)”是相對(duì)面,

,

∴完成2019次翻轉(zhuǎn)為第505組的第三次翻轉(zhuǎn),

∴骰子朝下一面的點(diǎn)數(shù)是5

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠D=∠C=90°,點(diǎn)EDC上,且AE,BE分別平分∠BAD∠ABC

1)求證:點(diǎn)ECD中點(diǎn);

2)當(dāng)AD=2,BC=3時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我市將創(chuàng)建全國(guó)森林城市,提出了共建綠色城的倡議.某校積極響應(yīng),在312日植樹節(jié)這天組織全校學(xué)生開展了植樹活動(dòng),校團(tuán)委對(duì)全校各班的植樹情況道行了統(tǒng)計(jì),繪制了如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖.

(1)求該校的班級(jí)總數(shù);

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求該校各班在這一活動(dòng)中植樹的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是一商場(chǎng)的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時(shí)之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:

操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)AB重合,折痕為DE

1)如果AC=6cm,BC=8cm,可求得△ACD的周長(zhǎng)為

2)如果∠CAD∠BAD=47,可求得∠B的度數(shù)為 ;

操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請(qǐng)求出CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是最大的負(fù)整數(shù),bc滿足,且a,b,c分別是點(diǎn)A,B,C在數(shù)軸上對(duì)應(yīng)的數(shù).

(1)ab,c的值,并在數(shù)軸上標(biāo)出點(diǎn)A,B,C;

(2)若動(dòng)點(diǎn)PC出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒2個(gè)單位長(zhǎng)度,運(yùn)動(dòng)幾秒后,點(diǎn)P到達(dá)B點(diǎn)?

(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)MAB,C三點(diǎn)的距離之和等于13,請(qǐng)直接寫出所有點(diǎn)M對(duì)應(yīng)的數(shù).(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測(cè)得的寬度,他們是這樣做的:①在河流的一條岸邊B點(diǎn),選對(duì)岸正對(duì)的一棵樹A;②沿河岸直走20m有一棵樹C,繼續(xù)前行20m到達(dá)D處;③從D處沿河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹正好被C樹遮擋住的E處停止行走;④測(cè)得DE的長(zhǎng)為5.

1)河的寬度是 .

2)請(qǐng)你說明他們做法的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點(diǎn)C,直線y=x被⊙P截得的弦AB的長(zhǎng)為,則a的值是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案