【題目】順次連接平面直角坐標(biāo)系xOy中,任意的三個(gè)點(diǎn)P,Q,G.如果∠PQG=90°,那么稱∠PQG為“黃金角”.
已知:點(diǎn)A(0,3),B(2,3),C(3,4),D(4,3).
(1)在A,B,C,D四個(gè)點(diǎn)中能夠圍成“黃金角”的點(diǎn)是 ;
(2)當(dāng)時(shí),直線y=kx+3(k≠0)與以OP為直徑的圓交于點(diǎn)Q(點(diǎn)Q與點(diǎn)O,P不重合),當(dāng)∠OQP是“黃金角”時(shí),求k的取值范圍;
(3)當(dāng)P(t,0)時(shí),以OP為直徑的圓與△BCD的任一邊交于點(diǎn)Q,當(dāng)∠OQP是“黃金角”時(shí),求t的取值范圍.
【答案】(1)B,C,D;(2)﹣≤k<0;(3)6≤t≤.
【解析】
(1)描點(diǎn),順次連接,看有幾個(gè)90°角.
(2)根據(jù)直線與圓有交點(diǎn),分為相切和相交兩種情況進(jìn)行求解.當(dāng)相切時(shí),根據(jù)切線的性質(zhì)及J(,0),F(0,3)求出∠JFO=∠JFQ=30°,從而求∠OFH=60°,最終求的H點(diǎn)的坐標(biāo)代入直線方程即可.當(dāng)相交時(shí)都符合條件,最終求出k的范圍
(3)根據(jù)(2)的分析,找出圓與三角形相切或相交的兩種極限情況求出的值,即為t邊界情況.
解:(1)觀察圖象可知:∠BCD=90°,
∴在A,B,C,D四個(gè)點(diǎn)中能夠圍成“黃金角”的點(diǎn)是B,C,D;
故答案為B,C,D.
(2)如圖2中,當(dāng)直線y=kx+3與⊙J相切時(shí),設(shè)直線y=kx+3交y軸于點(diǎn)F,交x軸于點(diǎn)H,切點(diǎn)為Q,連接FJ.
∵FO,FQ是切線,
∴∠JFO=∠JFQ,
∵J(,0),F(0,3),
∴tan∠JFO=
∴∠JFO=∠JFQ=30°,
∴∠OFH=60°,
∴OH=OF=3,
∴H(3,0),
把H(3,0)代入y=kx+3,
得到k=﹣,
觀察圖象可知:當(dāng)直線y=kx+3與⊙j有交點(diǎn)時(shí),∠OQP是“黃金角”(點(diǎn)Q與點(diǎn)O,P不重合),
∴﹣≤k<0.
(3)如圖3中,設(shè)以OP為直徑的圓的圓心為J.
由題意可知當(dāng)以OP為直徑的圓與△BCD的邊有交點(diǎn)時(shí),∠OQP是“黃金角”,
當(dāng)⊙J與△BCD的邊相切時(shí),J(3,0).此時(shí)P(6,0),t=6.
當(dāng)⊙J′經(jīng)過(guò)等C時(shí),連接CJ′,CJ.設(shè)OJ′=CJ′=r,
在Rt△CJJ′中,r2=(r﹣3)2+42,
解得r=,
∴OP′=,
∴P′(,0),
觀察圖象可知:當(dāng)6≤t≤時(shí),∠OQP是“黃金角”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線MN與以AB為直徑的半圓相切于點(diǎn)C,∠A=28°.
(1)求∠ACM的度數(shù);
(2)在MN上是否存在一點(diǎn)D,使ABCD=ACBC,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)圓柱體形零件,削去了占底面圓的四分之一部分的柱體(如圖),現(xiàn)已畫(huà)出了主視圖與俯視圖.
(1)請(qǐng)只用直尺和圓規(guī),將此零件的左視圖畫(huà)在規(guī)定的位置(不必寫(xiě)作法,只須保留作圖痕跡);
(2)若此零件底面圓的半徑r=2cm,高h=3cm,求此零件的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解九年級(jí)學(xué)生體育測(cè)試情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
(說(shuō)明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中D級(jí)所在的扇形的圓心角度數(shù)是多少?
(3)若該校九年級(jí)有600名學(xué)生,請(qǐng)用樣本估計(jì)體育測(cè)試中A級(jí)學(xué)生人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,點(diǎn)D是BC中點(diǎn),AE∥BC,CE∥AD.
(1)求證:四邊形ADCE是菱形;
(2)過(guò)點(diǎn)D作DF⊥CE于點(diǎn)F,∠B=60°,AB=6,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)如圖①,若∠P=35°,連OC,求∠BOC的度數(shù);
(2)如圖②,若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)摸取一個(gè)小球然后放回,再隨機(jī)摸出一個(gè)小球.
(Ⅰ)請(qǐng)用列表法(或畫(huà)樹(shù)狀圖法)列出所有可能的結(jié)果;
(Ⅱ)求兩次取出的小球標(biāo)號(hào)相同的概率;
(Ⅲ)求兩次取出的小球標(biāo)號(hào)的和大于6的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角△ABC中,∠A為直角,AB=6,AC=8.點(diǎn)P、Q、R分別在AB、BC、CA邊上同時(shí)開(kāi)始作勻速運(yùn)動(dòng),2秒后三個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),點(diǎn)P由點(diǎn)A出發(fā)以每秒3個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q由點(diǎn)B出發(fā)以每秒5個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)R由點(diǎn)C出發(fā)以每秒4個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),用t(秒)(0≤t≤2)表示運(yùn)動(dòng)時(shí)間,在運(yùn)動(dòng)過(guò)程中:
(1)當(dāng)t為何值時(shí),△APR的面積為4;
(2)求出△CRQ的最大面積;
(3)是否存在t,使∠PQR=90°?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問(wèn)題:
(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com