【題目】如圖,已知一次函數(shù)y1k1x+b的圖象與x軸、y軸分別交于AB兩點,與反比例函數(shù)y2的圖象分別交于CD兩點,點D2,﹣3),OA2

1)求一次函數(shù)y1k1x+b與反比例函數(shù)y2的解析式;

2)直接寫出k1x+b0時自變量x的取值范圍.

【答案】1;;(2x≤﹣40x2

【解析】

1)把點D的坐標代入反比例函數(shù),利用待定系數(shù)法即可求得反比例函數(shù)的解析式,作DEx軸于E,根據(jù)題意求得A的坐標,然后利用待定系數(shù)法求得一次函數(shù)的解析式;

2)根據(jù)圖象即可求得k1x+b≥0, ,自變量x的取值范圍.

解:(1)∵點D2,﹣3)在反比例函數(shù)y2的圖象上,

k2(﹣3)=﹣6,

y2=﹣;

如圖,作DEx軸于E

OA2

A(﹣20),

A(﹣2,0),D2,﹣3)在y1k1x+b的圖象上,

解得,

;

2)由圖可得,當k1x+b≥0時,x40x≤2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,五邊形內部有若干個點,用這些點以及五邊形的頂點的頂點把原五邊形分割成一些三角形(互相不重疊):

內部有1個點 內部有2個點 內部有3個點

1)填寫下表:

五邊形內點的個數(shù)

1

2

3

4

n

分割成的三角形的個數(shù)

5

7

9

2)原五邊形能否被分割成2019個三角形?若能,求此時五邊形內部有多少個點?若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形中,是對角線的中點,過點的直線分別交,的延長線于,.

1)求證:

2)若,試探究線段與線段之間的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線a≠0)與y軸交與點C0,3),與x軸交于A、B兩點,點B坐標為(4,0),拋物線的對稱軸方程為x=1

1)求拋物線的解析式;

2)點MA點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點NB點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設△MBN的面積為S,點M運動時間為t,試求St的函數(shù)關系,并求S的最大值;

3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】m,n是任意兩個實數(shù),規(guī)定m,n兩數(shù)較大的的數(shù)稱作這兩個數(shù)的絕對最值,用sec(m,n)表示。例如:sec(-1,-2)=-1,sec(1,2)=2,sec(0,0)=0,參照上面的材料,解答下列問題:

1sec(,3.14)=________,sec(,)=__________;

2)若sec(-3x-1,x+1)=-3x-1,x的取值范圍;

3)求函數(shù)的圖象的交點坐標,函數(shù)圖象如圖所示,請你在圖中作出函數(shù)的圖象,并根據(jù)圖象直接寫出sec-x+2, )的最小值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組;請結合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得____________________;

(Ⅱ)解不等式②,得____________________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為_______________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】機動車行駛到斑馬線要禮讓行人等交通法規(guī)實施后,某校數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結合圖中所給信息解答下列問題:

(1)填空:本次共調查_____名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是_____°

(2)請直接補全條形統(tǒng)計圖;

(3)填空:扇形統(tǒng)計圖中,m的值為_____;

(4)該校共有500名學生,根據(jù)以上信息,請你估計全校學生中對這些交通法規(guī)非常了解的約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雙曲線k為常數(shù),且)與直線交于兩點.

1)求kb的值;

2)如圖,直線ABx軸于點C,交y軸于點D,若點ECD的中點,求BOE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).

(1)求出拋物線的解析式;

(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;

(3)P是拋物線上一動點,過PPMx軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理.

查看答案和解析>>

同步練習冊答案