【題目】如圖,在平面直角坐標(biāo)系xOy中,對(duì)稱軸為直線x=1的拋物線y=-x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(-1,0)
(1)求拋物線的解析式;
(2)點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)P是拋物線上的動(dòng)點(diǎn),若△PCD是以CD為底的等腰三角形,求點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x2+2x+3;(2)點(diǎn)P的坐標(biāo)為(1+,2)或(1﹣,2).
【解析】
(1)求出A、B坐標(biāo),利用待定點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)D(1,0),
(2)由點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)D(1,0),可知滿足條件的點(diǎn)P的縱坐標(biāo)為2,解方程-x2+2x+3=2即可得到點(diǎn)P的橫坐標(biāo),由此即可解決問題.
解:(1)∵拋物線的對(duì)稱軸為直線x=1,y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,
∴由題意可求點(diǎn)A的坐標(biāo)為(3,0).
將點(diǎn)A(3,0)和點(diǎn)B(﹣1,0)代入y=﹣x2+bx+c,
得 ,
解得 ,
∴拋物線的解析式y=﹣x2+2x+3.
(2)如圖,
∵點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)D(1,0),
∴滿足條件的點(diǎn)P的縱坐標(biāo)為2.
∴﹣x2+2x+3=2.
解得 x1=1+,x2=1﹣,
∴點(diǎn)P的坐標(biāo)為(1+,2)或(1﹣,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12厘米,OB=6厘米.點(diǎn)P從點(diǎn)O開始沿OA邊向點(diǎn)A以1厘米/秒的速度移動(dòng);點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O以1厘米/秒的速度移動(dòng).如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間(0≤t≤6),那么,當(dāng)t為何值時(shí),△POQ與△AOB相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過點(diǎn)A作直線EF.
(1)如圖①,AB是直徑,要使EF是⊙O的切線,還須添加一個(gè)條件是(只需寫出三種情況).
(ī) (īī) (īīī)
(2)如圖(2),若AB為非直徑的弦,∠CAE=∠B,則EF是⊙O的切線嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)求A,B兩點(diǎn)的坐標(biāo)和此拋物線的對(duì)稱軸;
(2)設(shè)此拋物線的頂點(diǎn)為C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若存在過點(diǎn)P的直線l交⊙C于異于點(diǎn)P的A,B兩點(diǎn),在P,A,B三點(diǎn)中,位于中間的點(diǎn)恰為以另外兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)時(shí),則稱點(diǎn)P為⊙C 的相鄰點(diǎn),直線l為⊙C關(guān)于點(diǎn)P的相鄰線.
(1)當(dāng)⊙O的半徑為1時(shí),
①分別判斷在點(diǎn)D(, ),E(0,﹣),F(4,0)中,是⊙O的相鄰點(diǎn)有 ;
②請(qǐng)從①中的答案中,任選一個(gè)相鄰點(diǎn),在圖1中做出⊙O關(guān)于它的一條相鄰線,并說(shuō)明你的作圖過程;
③點(diǎn)P與點(diǎn)O的距離d滿足范圍___________________時(shí),點(diǎn)P是⊙O的相鄰點(diǎn);
④點(diǎn)P在直線y=﹣x+3上,若點(diǎn)P為⊙O的相鄰點(diǎn),求點(diǎn)P橫坐標(biāo)x的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸,y軸分別交于點(diǎn)M,N,若線段MN上存在⊙C的相鄰點(diǎn)P,直接寫出圓心C的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),如果點(diǎn)Q(x,y′)的縱坐標(biāo)滿足y′=,那么稱點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.
(1)請(qǐng)直接寫出點(diǎn)(3,5)的“關(guān)聯(lián)點(diǎn)”的坐標(biāo) ;
(2)如果點(diǎn)P在函數(shù)y=x﹣2的圖象上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);
(3)如果點(diǎn)M(m,n)的“關(guān)聯(lián)點(diǎn)”N在函數(shù)y=2x2的圖象上,當(dāng)0≤m≤2時(shí),求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究函數(shù)的圖象與性質(zhì).
小娜根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小娜的探究過程,請(qǐng)補(bǔ)充完整:
(1)下表是x與y的幾組對(duì)應(yīng)值.
x | … | 0 | 2 | 3 | … | ||||
y | … | 0 | m | n | 3 | … |
請(qǐng)直接寫出:m= ,n= ;
(2)如圖,小娜在平面直角坐標(biāo)系xOy中,描出了上表中已經(jīng)給出的各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)?jiān)倜璩鍪O碌膬蓚(gè)點(diǎn),并畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:若方程有三個(gè)不同的解,記為x1, x2, x3,且x1< x2<x3. 請(qǐng)直接寫出x1+ x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究下面是小美的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民的交通消費(fèi)可分為交通工具、交通工具使用燃料、交通工具維修、市內(nèi)公共交通、城市間交通五項(xiàng).該市統(tǒng)計(jì)局根據(jù)當(dāng)年各項(xiàng)的權(quán)重及各項(xiàng)價(jià)格的漲幅,計(jì)算當(dāng)年居民交通消費(fèi)價(jià)格的平均漲幅.2017年該市的有關(guān)數(shù)據(jù)如下表所示.
交通工具 | 交通工具使用燃料 | 交通工具維修 | 市內(nèi)公共交通 | 城市間交通 | |
占交通消費(fèi)的比例 | 22% | 13% | 5% | P | 26% |
相對(duì)上一年價(jià)格的漲幅 | 1.5% | m% | 2% | 0.5% | 1% |
(1)求p的值;
(2)若2017年該市的居民交通消費(fèi)相對(duì)上一年價(jià)格的平均漲幅為1.25%,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com