【題目】如圖①,△ABC中,AC=BC,∠A=30°,點(diǎn)D在AB邊上且∠ADC=45°.
(1)求∠BCD的度數(shù);
(2)將圖①中的△BCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到△BC′D′.當(dāng)點(diǎn)D′恰好落在BC邊上時(shí),如圖②所示,連接C′C并延長(zhǎng)交AB于點(diǎn)E.
①求∠C′CB的度數(shù);
②求證:△C′BD′≌△CAE.
【答案】(1)15°;(2)①75°;②答案見解析.
【解析】試題分析:(1)根據(jù)三角形外角性質(zhì),即可得到∠BCD=∠ADC﹣∠CBA=15°;
(2)①由旋轉(zhuǎn)可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,再根據(jù)等腰三角形的性質(zhì),即可得到∠CC'B=∠C'CB=75°;
②先根據(jù)AC=C'B,∠C'BD'=∠A,得出∠CEB=∠C'CB﹣∠CBA=45°,進(jìn)而得到∠ACE=∠CEB﹣∠A=15°,據(jù)此可得∠BC'D'=∠BCD=∠ACE,運(yùn)用ASA即可判定△C'BD'≌△CAE.
試題解析:解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°.∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';
(2)①由旋轉(zhuǎn)可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;
②證明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE.在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個(gè)交點(diǎn)A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點(diǎn)C,下面四個(gè)結(jié)論:①16a+4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③c=﹣3a;④若△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請(qǐng)將正確結(jié)論的序號(hào)全部填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)不透明的布袋里,都裝有3個(gè)大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為x,再?gòu)囊掖腥我饷鲆粋(gè)小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).
(1)請(qǐng)你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=﹣的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段上.點(diǎn)P從點(diǎn)C出發(fā)向點(diǎn)運(yùn)動(dòng),速度為2cm/s;同時(shí),點(diǎn)Q也從點(diǎn)C以4cm/s速度出發(fā)用1s到達(dá)A處,并在A處停留2s,然后按原速度向點(diǎn)B運(yùn)動(dòng),.最終,點(diǎn)Q比點(diǎn)P早1s到達(dá)B處.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t.
(1)線段AC的長(zhǎng)為 cm;當(dāng)t=3s時(shí),P,Q兩點(diǎn)之間的距離為 cm;
(2)求線段BC的長(zhǎng);
(3)從P,Q兩點(diǎn)同時(shí)出發(fā)至點(diǎn)P到達(dá)點(diǎn)B處的這段時(shí)間內(nèi),t為何值時(shí),P,Q兩點(diǎn)相距1cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級(jí),75≤x<85為B級(jí),60≤x<75為C級(jí),x<60為D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a=________%;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為________度;
(4)若該校共有2 000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小宇在周日上午8:00從家出發(fā),乘車1小時(shí)到達(dá)某活動(dòng)中心參加實(shí)踐活動(dòng).11:00時(shí)他在活動(dòng)中心
接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動(dòng)中心時(shí)的路線,以5千米/時(shí)的平均速
度快步返回.同時(shí),爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原
路返回.設(shè)小宇離家 x 小時(shí)后,到達(dá)離家y千米的地方,圖中折線OABCD表示 y 與 x 之間的函數(shù)關(guān)系.下
列敘述錯(cuò)誤的是( )
A. 活動(dòng)中心與小宇家相距22千米
B. 小宇在活動(dòng)中心活動(dòng)時(shí)間為2小時(shí)
C. 他從活動(dòng)中心返家時(shí),步行用了0.4小時(shí)
D. 小宇不能在12:00前回到家
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠C=90°,CA=CB=4cm,點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)E是CA邊的中點(diǎn), 連接PE,設(shè)A,P兩點(diǎn)間的距離為xcm,P,E兩點(diǎn)間的距離為y cm.小安根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小安的探究過程,請(qǐng)補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了與的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 2.8 | 2.2 | 2.0 | 2.2 | 2.8 | 3.6 | 5.4 | 6.3 |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①寫出該函數(shù)的一條性質(zhì): ;
②當(dāng)時(shí),的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形ABCD的頂點(diǎn)B在坐標(biāo)原點(diǎn),頂點(diǎn)A、C分別在y軸、x軸的負(fù)半軸上,其中,,將矩形ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)得到矩形,點(diǎn)恰好落在x軸上,線段與CD交于點(diǎn)E,那么點(diǎn)E的坐標(biāo)為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社推出一條成本價(jià)位500元/人的省內(nèi)旅游線路,游客人數(shù)y(人/月)與旅游報(bào)價(jià)x(元/人)之間的關(guān)系為y=﹣x+1300,已知:旅游主管部門規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.
(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報(bào)價(jià)的取值范圍;
(2)求經(jīng)營(yíng)這條旅游線路每月所需要的最低成本;
(3)檔這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)取值范圍為1100元/人~1200元/人之間;(2)50000;(3)x=900時(shí),w最大=160000
【解析】試題分析:(1)根據(jù)題意列不等式求解可;
(2)根據(jù)報(bào)價(jià)減去成本可得到函數(shù)的解析式,根據(jù)一次函數(shù)的圖像求解即可;
(3)根據(jù)利潤(rùn)等于人次乘以價(jià)格即可得到函數(shù)的解析式,然后根據(jù)二次函數(shù)的最值求解即可.
試題解析:(1)∵由題意得時(shí),即,
∴解得
即要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),該旅游線路報(bào)價(jià)的取值范圍為1100元/人~1200元/人之間;
(2),,∴
∵,∴當(dāng)時(shí),z最低,即;
(3)利潤(rùn)
當(dāng)時(shí),.
【題型】解答題
【結(jié)束】
23
【題目】已知四邊形ABCD中,AB=AD,對(duì)角線AC平分∠DAB,過點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)F為AB上一點(diǎn),且EF=EB,連接DF.
(1)求證:CD=CF;
(2)連接DF,交AC于點(diǎn)G,求證:△DGC∽△ADC;
(3)若點(diǎn)H為線段DG上一點(diǎn),連接AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com