【題目】如圖,Rt△ABC,∠C=90°,CA=CB=4cm,點(diǎn)P為AB邊上的一個動點(diǎn),點(diǎn)E是CA邊的中點(diǎn), 連接PE,設(shè)A,P兩點(diǎn)間的距離為xcm,P,E兩點(diǎn)間的距離為y cm.小安根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小安的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了與的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 2.8 | 2.2 | 2.0 | 2.2 | 2.8 | 3.6 | 5.4 | 6.3 |
(說明:補(bǔ)全表格時相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①寫出該函數(shù)的一條性質(zhì): ;
②當(dāng)時,的長度約為 cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】永輝超市銷售茶壺、茶杯,茶壺每只定價20元,茶杯每只4元.今年“雙十一”期間超市將開展促銷活動,向顧客提供兩種優(yōu)惠方案:
方案一:每買一只茶壺就贈一只茶杯;
方案二:茶壺和茶杯都按定價的90%付款.
某顧客計(jì)劃到該超市購買茶壺5只和茶杯只(茶杯數(shù)多于5只).
(1)用含的代數(shù)式分別表示方案一與方案二各需付款多少元?
(2)當(dāng)時,請通過計(jì)算說明該顧客選擇上面的兩種購買方案哪種更省錢?
(3)當(dāng)時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣2x+8的圖象與反比例函數(shù)y2=(x>0)的圖象交于A(3,n),B(m,6)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)根據(jù)圖象直接寫出當(dāng)x>0時,y1>y2的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,AC=BC,∠A=30°,點(diǎn)D在AB邊上且∠ADC=45°.
(1)求∠BCD的度數(shù);
(2)將圖①中的△BCD繞點(diǎn)B順時針旋轉(zhuǎn),得到△BC′D′.當(dāng)點(diǎn)D′恰好落在BC邊上時,如圖②所示,連接C′C并延長交AB于點(diǎn)E.
①求∠C′CB的度數(shù);
②求證:△C′BD′≌△CAE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:(ⅰ)如果兩個函數(shù) ,存在 取同一個值,使得,那么稱 為“互聯(lián)互通函數(shù)”,稱對應(yīng)的值為 的“互聯(lián)點(diǎn)”; (ⅱ)如果兩個函數(shù)為“互聯(lián)互通函數(shù)”,那么的最大值稱為的“互通值”.
(1)判斷函數(shù)與是否為“互通互聯(lián)函數(shù)”,如果是,請求出時他們的“互聯(lián)點(diǎn)”,如果不是,請說明理由;
(2)當(dāng)時,已知函數(shù)與是“互聯(lián)互通函數(shù)”.且有唯一“互聯(lián)點(diǎn)”;
①求出的取值范圍;
②若他們的“互通值”為18 ,試求出 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的課外活動,某校決定購買100個籃球和a(a>10)副羽毛球拍.經(jīng)調(diào)查發(fā)現(xiàn):甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費(fèi)用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個,則購買羽毛球拍可打八折.
(1)設(shè)每個籃球x元,則每副羽毛球拍______元(用含x的代數(shù)表示);并求出每個籃球和每副羽毛球拍的價格分別是多少?
(2)請用含a的代數(shù)式分別表示出到甲商店和乙商店購買所花的費(fèi)用;
(3)請你決策:在哪一家商店購買劃算?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,若AC:AB=1:2,EF⊥CB,求證:EF=CD;
(2)如圖2,若AC:AB=1: ,EF⊥CE,求EF: EG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的長方形CEFD拼在一起,構(gòu)成一個大的長方形ABEF,現(xiàn)將小長方形CEFD繞點(diǎn)C順時針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當(dāng)邊CD′恰好經(jīng)過EF的中點(diǎn)H時,求旋轉(zhuǎn)角α的大;
(2)如圖2,G為BC中點(diǎn),且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點(diǎn)C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大小;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點(diǎn)P(1,b).
(1)求b,m的值;
(2)垂直于x軸的直線與直線l1,l2,分別交于點(diǎn)C,D,垂足為點(diǎn)E,設(shè)點(diǎn)E的坐標(biāo)為(a,0)若線段CD長為2,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com