歡歡家想利用房屋側(cè)面的一面墻,再砌三面墻,圍成一個(gè)矩形豬圈(如圖),一面墻的中間留出1米寬的進(jìn)出門(門使用另外的材料).現(xiàn)備有足夠砌11米長的圍墻的材料,設(shè)豬圈與已有墻面垂直的墻的長度為x米,豬圈面積為y平方米.
(1)寫出y與x之間的函數(shù)關(guān)系式.
(2)要使豬圈面積為16平方米,如何設(shè)計(jì)三面圍墻的長度.
(3)能否使豬圈面積為20平方米?說明理由.
(4)你能求出豬圈面積的最大值嗎?
(1)根據(jù)題意得出:
y=x(12-2x)=-2x 2+12x,

(2)設(shè)垂直于墻的邊長為xm,
則x(12-2x)=16,
解得x1=2,x2=4,
當(dāng)x=2時(shí),12-2x=8,
當(dāng)x=4時(shí),12-2x=4,
所以垂直于墻的邊長為2米或4米;

(3)設(shè)垂直于墻的邊長為ym,
則y(12-2y)=20,
整理得,-2y2+12y-20=0,
△=144-4×(-2)×(-20)=-16<0,
∴此方程無解,
所以不能夠圍成;

(4)函數(shù)可化為:y=x(12-2x)=-2x 2+12x=-2(x-3) 2+18,
因此當(dāng)x=3時(shí),最大面積為18(米2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(1,0)且與直線y=
3
4
x+3相交于B、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)C在y軸上.
(1)求二次函數(shù)的解析式及函數(shù)的頂點(diǎn)坐標(biāo)
(2)如果P(x,y)是線段BC上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),試求△PAB的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請(qǐng)求一個(gè)滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=
1
2
mx2-
3
2
mx-2m交x軸于A(x1,0),B(x2,0)交y軸負(fù)半軸于C點(diǎn),且x1<0<x2,(AO+OB)2=12CO+1.
(1)求拋物線的解析式;
(2)在x軸的下方是否存在著拋物線上的點(diǎn)P,使∠APB為銳角?若存在,求出P點(diǎn)的橫坐標(biāo)的范圍;若不存在,請(qǐng)說明理由.
(3)如圖點(diǎn)E(2,-5),將直線CE向上平移a個(gè)單位與拋物線交于M,N兩點(diǎn),若AM=AN,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c當(dāng)x=-2時(shí)有最大值4,且二次函數(shù)圖象與直線y=x+1的一個(gè)交點(diǎn)為P(m,0),求:
(1)m的值;
(2)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2-2x+a(a>0)與y軸相交于點(diǎn)A,頂點(diǎn)為M.直線y=
1
2
x+
1
2
a
與x軸相交于B點(diǎn),與直線AM相交于N點(diǎn);直線AM與x軸相交于C點(diǎn)
(1)求M的坐標(biāo)與MA的解析式(用字母a表示);
(2)如圖,將△NBC沿x軸翻折,若N點(diǎn)的對(duì)應(yīng)點(diǎn)N′恰好落在拋物線上,求a的值;
(3)在拋物線y=-x2-2x+a(a>0)上是否存在一點(diǎn)P,使得以P、B、C、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=(k2-2)x2-4kx+m的對(duì)稱軸是直線x=2,且它的最低點(diǎn)在直線y=-2x+2上,求:
(1)函數(shù)解析式;
(2)若拋物線與x軸交點(diǎn)為A、B與y軸交點(diǎn)為C,求△ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個(gè)中學(xué)生推鉛球,鉛球在點(diǎn)A處出手,在點(diǎn)B處落地,它的運(yùn)行路線是一條拋物線,在平面直角坐標(biāo)系中,這條拋物線的解析式為:y=-
1
12
x2+
2
3
x+
5
3

(1)請(qǐng)用配方法把y=-
1
12
x2+
2
3
x+
5
3
化成y=a(x-h)2+k的形式.
(2)求出鉛球在運(yùn)行過程中到達(dá)最高點(diǎn)時(shí)離地面的距離和這個(gè)學(xué)生推鉛球的成績.(單位:米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

煙花廠為成都春節(jié)特別設(shè)計(jì)制作一種新型禮炮,這種禮炮的升空高度h(m)與飛行時(shí)間t(s)的關(guān)系式是h=-
3
2
t2+12t+30
,若這種禮炮在點(diǎn)火升空到最高點(diǎn)引爆,則從點(diǎn)火升空到引爆需要的時(shí)間為(  )
A.3sB.4sC.5sD.6s

查看答案和解析>>

同步練習(xí)冊(cè)答案