【題目】環(huán)保局對某企業(yè)排污情況進行檢測,結果顯示,所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的,環(huán)保局要求該企業(yè)立即整改,在15天以內(含15天)排污達標,整改過程中,所排污水中硫化物的濃度與時間(天)的變化規(guī)律如圖所示,其中線段表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度與時間成反比例關系
(1)求整改過程中硫化物的濃度與時間的函數(shù)表達式(要求標注自變量的取值范圍)
(2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(含15天)排污達標?為什么?
科目:初中數(shù)學 來源: 題型:
【題目】如圖是置于水平地面上的一個球形儲油罐,小敏想測量它的半徑、在陽光下,他測得球的影子的最遠點A到球罐與地面接觸點B的距離是10米(如示意圖,AB=10米);同一時刻,他又測得豎直立在地面上長為1米的竹竿的影子長為2米,那么,球的半徑是________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果點D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是( 。
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥BC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.
(1)如圖1,求證:∠ANE=∠DCE;
(2)如圖2,當點N在線段MB之間,聯(lián)結AC,且AC與NE互相垂直,求MN的長;
(3)連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數(shù)(為常數(shù),)的圖像與軸、軸分別相交于點,半徑為4的⊙與軸正半軸相交于點,與軸相交于點,點在點上方.
(1)若直線與弧有兩個交點.
①求的度數(shù);
②用含的代數(shù)式表示,并直接寫出的取值范圍;
(2)設,在線段上是否存在點,使?若存在,請求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是弧AB所對弦AB上一動點,過點P作PC⊥AB交AB于點P,作射線AC交弧AB于點D.已知AB=6cm,PC=1cm,設A,P兩點間的距離為xcm,A,D兩點間的距離為ycm.(當點P與點A重合時,y的值為0)
小平根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小平的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y與x的幾組對應值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 4.24 | 5.37 | m | 5.82 | 5.88 | 5.92 |
經(jīng)測量m的值是 (保留一位小數(shù)).
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y),并畫出函數(shù)y的圖象;
(3)結合函數(shù)圖象,解決問題:當∠PAC=30°,AD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC、BD交于點O,AD=15,AO=12.動點P以每秒2個單位的速度從點A出發(fā),沿AC向點C勻速運動.同時,動點Q以每秒1個單位的速度從點D出發(fā),沿DB向點B勻速運動.當其中有一點列達終點時,另一點也停止運動,設運動的時間為t秒.
(1)求線段DO的長;
(2)設運動過程中△POQ兩直角邊的和為y,請求出y關于x的函數(shù)解析式;
(3)請直接寫出點P在線段OC上,點Q在線段DO上運動時,△POQ面積的最大值,并寫出此時的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com