【題目】全面二孩政策于2016年1月1日正式實施,黔南州某中學對八年級部分學生進行了隨機問卷調(diào)查,其中一個問題“你爸媽如果給你添一個弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個選項(要求僅選擇一個選項):
A.非常愿意 B.愿意 C.不愿意 D.無所謂
如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中信息解答以下問題:
(1)試問本次問卷調(diào)查一共調(diào)查了多少名學生?并補全條形統(tǒng)計圖;
(2)若該年級共有450名學生,請你估計全年級可能有多少名學生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個弟弟(或妹妹)?
(3)在年級活動課上,老師決定從本次調(diào)查回答“不愿意”的同學中隨機選取2名同學來談?wù)勊麄兊南敕,而本次調(diào)查回答“不愿意”的這些同學中只有一名男同學,請用畫樹狀圖或列表的方法求選取到兩名同學中剛好有這位男同學的概率.
【答案】
(1)解:20÷50%=40(名),
所以本次問卷調(diào)查一共調(diào)查了40名學生,
選B的人數(shù)=40×30%=12(人),
選A的人數(shù)=40﹣12﹣20﹣4=4(人)
補全條形統(tǒng)計圖為:
(2)解:450× =180,
所以估計全年級可能有180名學生支持;
(3)解:“非常愿意”的四名同學分別用1、2、3、4表示,其中1表示男同學,
畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中選取到兩名同學中剛好有這位男同學的結(jié)果數(shù)為6,
所以選取到兩名同學中剛好有這位男同學的概率= = .
【解析】(1)用選D的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)乘以選B所占的百分比得到選B的人數(shù),然后用總?cè)藬?shù)分別減去選B、C、D的人數(shù)得到選A的人數(shù),再補全條形統(tǒng)計圖;
(2)利用樣本估計總體,用450乘以樣本中選A和選B所占的百分比可估計全年級支持的學生數(shù);
(3)“非常愿意”的四名同學分別用1、2、3、4表示,其中1表示男同學,畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選取到兩名同學中剛好有這位男同學的結(jié)果數(shù),然后根據(jù)概率公式計算.
【考點精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是( )
A.3
B.10
C.9
D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,D為AC中點,過點D作DE∥BC,交AB于點E.
(1)求證:AE=DE;
(2)若∠C=65°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一水果經(jīng)銷商購進了A,B兩種水果各10箱,分配給他的甲、乙兩個零售店(分別簡稱甲店、乙店)銷售,預(yù)計每箱水果的盈利情況如下表:
A種水果/箱 | B種水果/箱 | |
甲店 | 11元 | 17元 |
乙店 | 9元 | 13元 |
(1)如果甲、乙兩店各配貨10箱,其中A種水果兩店各5箱,B種水果兩店各5箱,請你計算出經(jīng)銷商能盈利多少元?
(2)在甲、乙兩店各配貨10箱(按整箱配送),且保證乙店盈利不小于100元的條件下,請你設(shè)計出使水果經(jīng)銷商盈利最大的配貨方案,并求出最大盈利為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,BD的垂直平分線分別交AB、CD、BD于E、F、O,連接DE、BF.
(1)求證:四邊形BEDF是菱形;
(2)若AB=8cm,BC=4cm,求四邊形DEBF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:
甲林場 | 乙林場 | ||
購樹苗數(shù)量 | 銷售單價 | 購樹苗數(shù)量 | 銷售單價 |
不超過1000棵時 | 4元/棵 | 不超過2000棵時 | 4元/棵 |
超過1000棵的部分 | 3.8元/棵 | 超過2000棵的部分 | 3.6元/棵 |
設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y甲(元)、y乙(元).
(1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為 元,若都在乙林場購買所需費用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負責人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90。 , 0B=2OA,點A在反比例函數(shù) 的圖象上,點B在反比例函數(shù) 的圖象上,則k的值是( )
A.-4
B.4
C.-2
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線Y=ax2+bx一3與X軸相交于A(一1,0),B(3,0),P為拋物線上第四象限上的點.
(1)求該拋物線的函數(shù)關(guān)系式.
(2)過點P作PD⊥X軸于點D,PD交BC于點E,當線段PE的長度最大時,求點P的坐標.
(3)當線段PE的長度最大時,作PF ⊥BC于點F,連結(jié)DF.在射線PD上有一點Q,滿足∠PQB=∠DFB,問在坐標軸上是否存在一點R,使得S△RBE=S△QBE;如果存在,直接寫出R點的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com