【題目】如圖,CD是經(jīng)過頂點C的一條直線,且直線CD經(jīng)過的內(nèi)部,點E,F在射線CD上,已知且.
(1)如圖1,若,,問,成立嗎?說明理由.
(2)將(1)中的已知條件改成,(如圖2),問仍成立嗎?說明理由.
【答案】(1)成立,理由見解析;(2)成立,理由見解析.
【解析】
(1)首先求出∠A=∠BCE,然后利用AAS證明△BCE≌△CAF,即可解決問題;
(2)由題意可得∠BCE+∠FCA=,∠FCA+∠A=180°-,然后可求出∠A=∠BCE,再利用AAS證明△BCE≌△CAF,即可解決問題.
解:(1)∵,,
∴∠FCA+∠A=180°-∠α=180°-100°=80°,∠BCE+∠FCA=80°,
∴∠A=∠BCE,
∵,,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴;
(2)仍成立;
理由如下:
∵,,
∴∠BCE+∠FCA=,∠FCA+∠A=180°-,
∴∠A=∠BCE,
∵,,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC中,AB=AC=BC=10厘米,M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度是1厘米/秒的速度,點N的速度是2厘米/秒,當(dāng)點N第一次到達B點時,M、N同時停止運動.
(1)M、N同時運動幾秒后,M、N兩點重合?
(2)M、N同時運動幾秒后,可得等邊三角形△AMN?
(3)M、N在BC邊上運動時,能否得到以MN為底邊的等腰△AMN,如果存在,請求出此時M、N運動的時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,ABCD是邊長為1的正方形,O是正方形的中心,Q是邊CD上一個動點(點Q不與點C、D重合),直線AQ與BC的延長線交于點E,AE交BD于點P.設(shè)DQ=x.
(1)填空:當(dāng)時,的值為 ;
(2)如圖2,直線EO交AB于點G,若BG=y,求y關(guān)于x之間的函數(shù)關(guān)系式;
(3)在第(2)小題的條件下,是否存在點Q,使得PG∥BC?若存在,求x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個實數(shù)根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個整數(shù)點(點A在點B左側(cè)),且m為正整數(shù),求此拋物線的表達式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點C,點B關(guān)于y軸的對稱點為D,設(shè)此拋物線在﹣3≤x≤﹣之間的部分為圖象G,如果圖象G向右平移n(n>0)個單位長度后與直線CD有公共點,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
x | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 |
y=x2﹣2x﹣2 | ﹣1.79 | ﹣1.56 | ﹣1.31 | ﹣1.04 | ﹣0.75 | ﹣0.44 | ﹣0.11 | 0.24 | 0.61 |
則一元二次方程x2﹣2x﹣2=0在精確到0.1時一個近似根是 ________ ,利用拋物線的對稱性,可推知該方程的另一個近似根是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】慢車和快車先后從甲地出發(fā)沿直線道路勻速駛向乙地,快車比慢車晚出發(fā)0.5小時,行駛一段時間后,快車途中休息,休息后繼續(xù)按原速行駛,到達乙地后停止.慢車和快車離甲地的距離y(千米)與慢車行駛時間x(小時)之間的函數(shù)關(guān)系如圖所示.有以下說法:①快車速度是120千米/小時;②慢車到達乙地比快車到達乙地晚了0.5小時;③點C坐標(biāo)(,100);④線段BC對應(yīng)的函數(shù)表達式為y=120x﹣60(0.5≤x≤);其中正確的個數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點,MN垂直平分BE,分別交AD,BE,BC于點M,O,N,連接BM,EN
(1)求證:四邊形BMEN是菱形.
(2)若AE=8,F為AB的中點,BF+OB=8,求MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.
(1)請直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤,銷售單價為多少元?
(3)設(shè)每天的利潤為w元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3與x軸交于點D.
(Ⅰ)求拋物線的頂點C的坐標(biāo)及A,B兩點的坐標(biāo);
(Ⅱ)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內(nèi),求t的取值范圍;
(Ⅲ)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當(dāng)△PAB的面積是△ABC面積的2倍時,求m,n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com