(2008•哈爾濱)△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC向右平移6個單位得到△A1B1C1,請畫出△A1B1C1;并寫出點(diǎn)C1的坐標(biāo);
(2)將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°得到△A2B2C2,請畫出△A2B2C2

【答案】分析:(1)原三角形中點(diǎn)A、B、C的坐標(biāo)已知,將△ABC向右平移6個單位后,橫坐標(biāo)變?yōu)閤+6,而縱坐標(biāo)不變,所以點(diǎn)A1、B1、C1的坐標(biāo)可知,確定坐標(biāo)點(diǎn)連線即可畫出圖形.
(2)將△ABC中的各點(diǎn)A、B、C旋轉(zhuǎn)180°后,得到相應(yīng)的對應(yīng)點(diǎn)A2、B2、C2,連接各對應(yīng)點(diǎn)即得△A2B2C2
解答:解:(1)如圖(2分);C1(1,1)(1分);


【(1)△A1B1C1上每一點(diǎn)的橫坐標(biāo)比△ABC上對應(yīng)點(diǎn)的橫坐標(biāo)大6;(2)△ABC與△A2B2C2實(shí)質(zhì)上是關(guān)于原點(diǎn)對稱,其對應(yīng)點(diǎn)的橫、縱坐標(biāo)都為互為相反數(shù).】
點(diǎn)評:本題考查圖形的平移變換及旋轉(zhuǎn)變換.關(guān)鍵是要懂得左右平移點(diǎn)的縱坐標(biāo)不變,而上下平移時點(diǎn)的橫坐標(biāo)不變,平移變換是中考的常考點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點(diǎn),將△ABO繞原點(diǎn)O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點(diǎn)G.動點(diǎn)E從原點(diǎn)O出發(fā),以1個單位/秒的速度沿x軸正方向運(yùn)動,設(shè)動點(diǎn)E運(yùn)動的時間為t秒.
(1)求點(diǎn)D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點(diǎn)為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點(diǎn)為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點(diǎn),將△ABO繞原點(diǎn)O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點(diǎn)G.動點(diǎn)E從原點(diǎn)O出發(fā),以1個單位/秒的速度沿x軸正方向運(yùn)動,設(shè)動點(diǎn)E運(yùn)動的時間為t秒.
(1)求點(diǎn)D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點(diǎn)為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點(diǎn)為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識點(diǎn)回歸+鞏固 專題11 一次函數(shù)(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點(diǎn),將△ABO繞原點(diǎn)O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點(diǎn)G.動點(diǎn)E從原點(diǎn)O出發(fā),以1個單位/秒的速度沿x軸正方向運(yùn)動,設(shè)動點(diǎn)E運(yùn)動的時間為t秒.
(1)求點(diǎn)D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點(diǎn)為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點(diǎn)為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•哈爾濱)如圖,在平面直角坐標(biāo)系中,直線y=與x軸、y軸分別交于A、B兩點(diǎn),將△ABO繞原點(diǎn)O順時針旋轉(zhuǎn)得到△A′B′O,并使OA′⊥AB,垂足為D,直線AB與線段A´B´相交于點(diǎn)G.動點(diǎn)E從原點(diǎn)O出發(fā),以1個單位/秒的速度沿x軸正方向運(yùn)動,設(shè)動點(diǎn)E運(yùn)動的時間為t秒.
(1)求點(diǎn)D的坐標(biāo);
(2)連接DE,當(dāng)DE與線段OB′相交,交點(diǎn)為F,且四邊形DFB′G是平行四邊形時,(如圖2)求此時線段DE所在的直線的解析式;
(3)若以動點(diǎn)為E圓心,以為半徑作⊙E,連接A′E,t為何值時,Tan∠EA′B′=?并判斷此時直線A′O與⊙E的位置關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•哈爾濱)小李想用籬笆圍成一個周長為60米的矩形場地,矩形面積S(單位:平方米)隨矩形一邊長x(單位:米)的變化而變化.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x是多少時,矩形場地面積S最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案