【題目】如圖,在Rt△ABC中,∠BAC=90°,以邊AB為直徑作⊙O,交斜邊BC于D,E在弧上,連接AE、ED、DA,連接AE、ED、DA.
(1)求證:∠DAC=∠AED;
(2)若點E是的中點,AE與BC交于點F,當BD=5,CD=4時,求DF的長.
【答案】(1)詳見解析;(2)DF=2.
【解析】
(1)根據圓周角定理得到AD⊥BC,根據余角的性質和圓周角定理即可得到結論;
(2)根據等腰三角形的性質得到CA=CF,根據相似三角形的性質即可得到結論.
(1)證明:∵AB是⊙O的直徑,
∴AD⊥BC,
∵∠BAC=90°,
∴∠CAD+∠BAD=∠BAD+∠B=90°,
∴∠CAD=∠B,
∵∠E=∠ABD,
∴∠DAC=∠AED;
(2)∵點E是的中點,
∴∠BAE=∠EAD,
∵∠CFA=∠ABC+∠BAE,∠CAE=∠CDA+∠EAD,
∴∠CFA=∠CAE,
∴CA=CF,
∵∠BAC=∠ADB=90°,
∴∠ACD=∠BCA,
∴△ADC∽△BAC,
∴,
即AC2=BC×CD=(5+4)×4=36,
解得AC=6,
∴CA=CF=6,
∴DF=CA﹣CD=2.
科目:初中數學 來源: 題型:
【題目】如圖,過點P(2,)作x軸的平行線交y軸于點A,交雙曲線于點N,作PM⊥AN交雙曲線于點M,連接AM,若PN=4.
(1)求k的值;
(2)設直線MN解析式為y=ax+b,求不等式的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內切圓,以此類推,依此類推,圖10中有10個直角三角形的內切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=( )
A. 4π B. 3π C. 2π D. π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,O是坐標原點,直線AB交x軸于點A(﹣4,0),交y軸于點B,拋物線y=ax2+2ax+3(a≠0)經過A,B兩點.P是線段AO上的一動點,過點P作PC⊥x軸交直線AB于點C,交拋物線于點D.
(1)求a及AB的長.
(2)連結PB,若tan∠ABP=,求點P的坐標.
(3)連結BD,以BD為邊作正方形BDEF,是否存在點P使點E恰好落在拋物線的對稱軸上?若存在,請求出點P的坐標;若不存在,請說明理由.
(4)連結OC,若S△BDC:S△OBC=1:2,將線段BD繞點D按順時針方向旋轉,得到DB′.則在旋轉的過程中,當點A,B到直線DB′的距離和最大時,請直接寫出點B′的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一塊含30°角的三角板的直角頂點放在反比例函數y=﹣(x<0)的圖象上的點C處,另兩個頂點分別落在原點O和x軸的負半軸上的點A處,且∠CAO=30°,則AC邊與該函數圖象的另一交點D的坐標坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網?球會不會出界?請說明理由;
(3)若球一定能越過球網,又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用48米長的竹籬笆在空地上,圍成一個綠化場地,現有兩種設計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在研究相似問題時,甲、乙同學的觀點如下:
甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應邊間距均為1,則新矩形與原矩形不相似.
對于兩人的觀點,下列說法正確的是( )
A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數 yx2bxc(b,c均為常數),當x1時,函數有最小值.甲乙丙三位同學繼續(xù)研究,得出以下結論:甲:該函數的最小值為3;乙:1是方程x2bxc0的一個根;丙:當x2時,y4.若這三個結論中只有一個是錯誤的,那么得出錯誤結論的同學是___.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com