【題目】已知a=5,│b│=8,且滿足ab<0,則ab的值為( )

A. 3 B. -3 C. -13 D. 13

【答案】D

【解析】

由絕對值的意義求出b的值,根據a+b的值小于0,得到滿足題意的b的值,即可得到ab的值.

|b|8,∴b=±8

a=5,a+b0,∴a5,b=-8

a5b=﹣8時,ab=5-(-8=5+8=13

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A的坐標為(-2,0),直線與x軸、y軸分別交于點B和點C,連接AC,頂點為D的拋物線過A、B、C三點.

(1)求拋物線的解析式及頂點D的坐標;

(2)設拋物線的對稱軸DE交線段BC于點E,P是第一象限內拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.

(3)設點M是線段BC上的一動點,過點M作MN∥AB,交AC于點N,點Q從點B出發(fā),以每秒1個單位長度的速度沿線段BA向點A運動,運動時間為t(秒),當t(秒)為何值時,存在△QMN為等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組數(shù)據中,四個數(shù)成比例的是(  )

A. 3,24,9B. 1,23,6C. 1,23,4D. 58,26

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個正數(shù)的兩個平方根分別是3a+2和a+14,求這個數(shù)的立方根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,直線AB、CD相交于O,∠AOC=50°,OE平分∠DOB,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了考察甲、乙兩塊地小麥的長勢,分別從中抽取10株苗,測得苗高如下(單位:cm):甲:12,13,14,15,10,16,13,11,15,11;乙:11,16,17,14,13,19,6,8,10,16.要比較哪塊地小麥長得比較整齊,我們應選擇的統(tǒng)計量是( )

A. 中位數(shù)B. 平均數(shù)C. 眾數(shù)D. 方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形AOBC在直角坐標系中,點A在y軸上,點B在x軸上,已知點C的坐標是(8,4).

(1)求對角線AB所在直線的函數(shù)關系式;
(2)對角線AB的垂直平分線MN交x軸于點M,連接AM,求線段AM的長;
(3)若點P是直線AB上的一個動點,當△PAM的面積與長方形OABC的面積相等時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經過點(0,1)的是 ( )

A.y=(x2)2+1B.y=(x+2)2+1

C.y=(x2)23D.y=(x+2)23

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;
④FH= BD其中正確結論的為(請將所有正確的序號都填上).

查看答案和解析>>

同步練習冊答案